Math, asked by Anonymous, 4 days ago

  \red{\displaystyle \rm \lim_{n \to \infty }n \int_{0}^{1}  \bigg(  \frac{2x}{1 + x} \bigg) ^{n}  dx}

Answers

Answered by sajan6491
10

\red{\displaystyle \rm \lim_{n \to \infty }n \int_{0}^{1} \bigg( \frac{2x}{1 + x} \bigg) ^{n} dx}

\red{\displaystyle \rm A_n =  \int_{0}^{1} \bigg( \frac{2x}{1 + x} \bigg) ^{n} dx}

 \large  \rm \red{u =  \frac{2x}{1 + x} } \:  \:  \:  \:  \:  \rm \red{ x = \frac{u}{2 - u} }

 \large \rm \red{dx =  \dfrac{1}{2 \left(1 +  \frac{u}{2} \right ) {}^{2} }du }

\red{\displaystyle \rm  \int_{0}^{1}  \frac{ {u}^n }{2 \left(1  -  \frac{u}{2}  \right)^{2} }   du =  \frac{1}{2}\int_{0}^{1} \frac{ {u}^{n} }{0(1 -  \frac{u}{2})(1 -  \frac{ u }{2} ) } du }

\red{\displaystyle \rm   =  \frac{1}{2}\int_{0}^{1}  {u}^{n} \sum_{k = 0}^{ \infty } \bigg( \frac{u}{2} \bigg)^k  \sum_{m = 0}^{ \infty } \bigg( \frac{u}{2} \bigg)^m \: du }

\red{\displaystyle \rm   =  \frac{1}{2}\sum_{k = 0}^{ \infty } \frac{1}{ {2}^{k} } \sum_{m = 0}^{ \infty } \frac{1}{ {2}^{m} }  \int_{0}^{1}  {u}^{n + k + m}  \: du }

\red{\displaystyle \rm   =  \frac{1}{2}\sum_{k = 0}^{ \infty } \frac{1}{ {2}^{k} } \sum_{n = 0}^{ \infty } \frac{1}{ {2}^{m} }   \left  [  \frac{ {u}^{n + k + m + 1} }{n + k + m + 1}  \bigg|_{0}^1 \right] }

\red{\displaystyle \rm   A_n=  \frac{1}{2}\sum_{k = 0}^{ \infty } \frac{1}{ {2}^{k} } \sum_{m = 0}^{ \infty } \frac{1}{ {2}^{m} }   \left  ( \frac{ 1 }{n + k + m + 1}  \right )}

 \color{red} \displaystyle \rm   \lim_{n \to \infty } n \cdot A_n =  \lim_{n \to \infty } \frac{1}{2}  \sum_{k = 0}^{ \infty }  \frac{1}{2m}   \overbrace{\bigg(  \frac{n}{n + k + m + 1} \bigg)}^{ \displaystyle  \rm\lim_{n \to \infty  } = 1}

 \large   \rm \red{ \dfrac{1}{2} \bigg( \sum \limits_{k = 0}^ \infty    \frac{1}{ {2}^{k} } \bigg)^{2} =     \rm \dfrac{1}{2}  \bigg( \frac{1}{1 -  \frac{1}{2} } \bigg)^{2}   }

 \large \red{ \frac{1}{2} (2) {}^{2} = 2 }

Similar questions