Math, asked by NewBornTigerYT, 10 months ago

\red{EXPLANATION REQUIRED}

❗️❗️Please Answer my question. Warning ⚠ It will be verified ☑ by brainly experts ❗️❗
️If you felt it easy then plz answer my questions by checking out my profile

Attachments:

Answers

Answered by Anonymous
22

\Large{\underline{\underline{\mathfrak{\green{\bf{Solution}}}}}}

\Large{\underline{\sf{\:Given}}}

  • Quadratic equation mx² - nx + k = 0
  • \sf{\:\tan 33^{\circ}\:and\:\tan 12^{\circ}\:are\:zeroes}

\Large{\underline{\sf{\:Find}}}

  • \sf{\:Value\:of\:\dfrac{(2m+n+k)}{m}}

\Large{\underline{\underline{\mathfrak{\green{\bf{Explanation}}}}}}

we know,

\small\boxed{\boxed{\sf{\pink{\:Sum\:of\:zeroes\:=\:\dfrac{-(Coefficient\:of\:x)}{(coefficient\:of\:x^2)}}}}}

\implies\sf{\:\tan 33^{\circ}\:+\:\tan 12^{\circ}\:=\:\dfrac{-(-n)}{m}}

\implies\sf{\:\tan 33^{\circ}\:+\:\tan 12^{\circ}\:=\:\dfrac{n}{m}.......(1)}

Again,

\small\boxed{\boxed{\sf{\pink{\:product\:of\:zeroes\:=\:\dfrac{(Constant\:part)}{(coefficient\:of\:x^2)}}}}}

\implies\sf{\:\tan 33^{\circ}\times \tan 12^{\circ}\:=\:\dfrac{k}{m}.......(2)}

Important formula

\sf{\:\tan(x+y)\:=\:\dfrac{(\tan x + \tan y)}{(1-\tan x.\tan y)}}

\sf{\:\tan 45^{\circ}\:=\:1}

So,

\mapsto\sf{\:\tan (33^{\circ}+12^{\circ})\:=\:\dfrac{(\tan 33^{\circ}+\tan 12^{\circ})}{(1-\tan 33^{\circ} \tan 12^{\circ})}}

\mapsto\sf{\:\tan (45^{\circ})\:=\:\dfrac{(\tan 33^{\circ}+\tan 12^{\circ})}{(1-\tan 33^{\circ} .\tan 12^{\circ})}}

\mapsto\sf{\:1\:=\:\dfrac{(\tan 33^{\circ}+\tan 12^{\circ})}{(1-\tan 33^{\circ} .\tan 12^{\circ})}}

\mapsto\sf{\:(\tan 33^{\circ}\:+\:\tan 12^{\circ})\:=\:(1-\tan 33^{\circ}.\tan 12^{\circ})......(3)}

Now,

\implies\sf{\:\dfrac{(2m+n+k)}{m}}

\implies\sf{\:\dfrac{2\cancel{m}}{\cancel{m}}\:+\:\dfrac{n}{m}\:+\:\dfrac{k}{m}}

\implies\sf{\:\dfrac{n}{m}\:+\:\dfrac{k}{m}+2}

\:\:\:\:\small\sf{\:keep\:value\:by\:equ(1)\:and\:(2)}

\implies\sf{\:(\tan 33^{\circ}\:+\:\tan 12^{\circ})\:+\:(\tan 33^{\circ}.\tan 12^{\circ})\:+\:2}

Again,

\:\:\:\:\small\sf{\:keep\:value\:by\:equ(3)}

\implies\sf{(\:1-\cancel{\tan 33^{\circ} \tan 12^{\circ}})+\:\cancel{\tan 33^{\circ}. \tan 12^{\circ}}\:+\:2}

\implies\mathfrak{\bf{\:3\:\:\:\:\:\:Ans}}

Similar questions