Math, asked by sajan6491, 2 days ago

 \red{ \rm{If  \: u=( {x}^{2} +  {y}^{2}  ) ^{ \frac{1}{3} } } \: then \: evaluate} \\ \color{green}  \rm {x}^{2}  \frac{ \partial {}^{2}u }{ \partial {x}^{2}  }  + 2xy \frac{ \partial {}^{2} u}{2x \partial y}  +  {y}^{2}  \frac{ { \partial}^{2}u }{ \partial {y}^{2} }

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm \: u=\bigg( {x}^{2} + {y}^{2} \bigg) ^{ \dfrac{1}{3} } \\

can be rewritten as

\rm \: u= {\bigg(x\bigg) }^{\dfrac{2}{3} } \bigg(1 +  \frac{ {y}^{2} }{ {x}^{2} } \bigg) ^{ \dfrac{1}{3} } \\

\rm\implies \:u \: is \: a \: homogenous \: function \: of \: degree \: \dfrac{2}{3}  \\

So, By Euler's Theorem, we have

\rm \: x\dfrac{\partial u}{\partial x}  + y\dfrac{\partial u}{\partial y} = \dfrac{2}{3}u -  -  - (1) \\

On differentiating both sides partially w. r. t. x, we get

\rm \: x\dfrac{\partial {}^{2} u}{\partial  {x}^{2} }  +\dfrac{\partial u}{\partial x}  + y\dfrac{\partial {}^{2} u}{\partial y \: \partial x} = \dfrac{2}{3}\dfrac{\partial u}{\partial x}  \\

\rm \: x\dfrac{\partial {}^{2} u}{\partial  {x}^{2} }  + y\dfrac{\partial {}^{2} u}{\partial y \: \partial x} = \dfrac{2}{3}\dfrac{\partial u}{\partial x} - \dfrac{\partial u}{\partial x}  \\

\rm \: x\dfrac{\partial {}^{2} u}{\partial  {x}^{2} }  + y\dfrac{\partial {}^{2} u}{\partial y \: \partial x} =  -  \: \dfrac{1}{3}\dfrac{\partial u}{\partial x}   \\

On multiply both sides by x, we get

\rm \:  {x}^{2} \dfrac{\partial {}^{2} u}{\partial  {x}^{2} }  + xy\dfrac{\partial {}^{2} u}{\partial y \: \partial x} =  -  \: \dfrac{1}{3}x\dfrac{\partial u}{\partial x}    -  -  - (2)\\

Now, on differentiating both sides partially w. r. t. y, equation (1), we get

\rm \: x\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  + y\dfrac{\partial {}^{2} u}{\partial  {y}^{2} } + \dfrac{\partial u}{\partial y} = \dfrac{2}{3}\dfrac{\partial u}{\partial y} \\

\rm \: x\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  + y\dfrac{\partial {}^{2} u}{\partial  {y}^{2} } = \dfrac{2}{3}\dfrac{\partial u}{\partial y} - \dfrac{\partial u}{\partial y} \\

\rm \: x\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  + y\dfrac{\partial {}^{2} u}{\partial  {y}^{2} } =  -  \: \dfrac{1}{3}\dfrac{\partial u}{\partial y}  \\

On multiply both sides by y, we get

\rm \: xy\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  +  {y}^{2} \dfrac{\partial {}^{2} u}{\partial  {y}^{2} } =  -  \: \dfrac{1}{3}y\dfrac{\partial u}{\partial y}   -  -  - (3)\\

On adding equation (2) and (3), we get

\rm \:  {x}^{2} \dfrac{\partial {}^{2}u}{\partial  {x}^{2} }  + 2xy\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  +  {y}^{2} \dfrac{\partial {}^{2} u}{\partial  {y}^{2} } =  - \dfrac{1}{3}x \dfrac{\partial u}{\partial x}  - \dfrac{1}{3}y\dfrac{\partial u}{\partial y} \\

\rm \:  {x}^{2} \dfrac{\partial {}^{2}u}{\partial  {x}^{2} }  + 2xy\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  +  {y}^{2} \dfrac{\partial {}^{2} u}{\partial  {y}^{2} } =  - \dfrac{1}{3}\bigg(x \dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} \bigg)\\

Now, using equation (1), we get

\rm \:  {x}^{2} \dfrac{\partial {}^{2}u}{\partial  {x}^{2} }  + 2xy\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  +  {y}^{2} \dfrac{\partial {}^{2} u}{\partial  {y}^{2} } =  - \dfrac{1}{3}\bigg(\dfrac{2}{3}u \bigg)\\

\rm \:  {x}^{2} \dfrac{\partial {}^{2}u}{\partial  {x}^{2} }  + 2xy\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  +  {y}^{2} \dfrac{\partial {}^{2} u}{\partial  {y}^{2} } =  - \dfrac{2}{9}u\\

Hence,

\color{green}\rm\implies \boxed{ \rm{ \:{x}^{2} \dfrac{\partial {}^{2}u}{\partial  {x}^{2} }  + 2xy\dfrac{\partial {}^{2} u}{\partial x \: \partial y}  +  {y}^{2} \dfrac{\partial {}^{2} u}{\partial  {y}^{2} } =  - \dfrac{2}{9}u}}\\

Similar questions