Math, asked by sajan6491, 4 days ago

  \red{ \rm{sin(x)  \left( \dfrac{ {e}^{ - y } +  {e}^{y}  }{2}  \right) +  \cos(x)  \left(  \dfrac{ {e}^{ - y}  -  {e}^{y} }{2i} \right)}}

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

We have,

\rm{sin(x)\left(\dfrac{e^{-y}+e^{y}}{2}\right)+cos(x)\left(\dfrac{e^{-y}-e^{y}}{2i}\right)}

\rm{=\dfrac{e^{ix}-e^{-ix}}{2i}\cdot\dfrac{e^{-y}+e^{y}}{2}+\dfrac{e^{ix}+e^{-ix}}{2}\cdot\dfrac{e^{-y}-e^{y}}{2i}}

\rm{=\dfrac{\left(e^{ix}-e^{-ix}\right)\left(e^{-y}+e^{y}\right)}{4i}+\dfrac{\left(e^{ix}+e^{-ix}\right)\left(e^{-y}-e^{y}\right)}{4i}}

\rm{=\dfrac{e^{-y+ix}-e^{-y-ix}+e^{y+ix}-e^{y-ix}}{4i}+\dfrac{e^{-y+ix}+e^{-y-ix}-e^{y+ix}-e^{y-ix}}{4i}}

\rm{=\dfrac{e^{-y+ix}-e^{-y-ix}+e^{y+ix}-e^{y-ix}+e^{-y+ix}+e^{-y-ix}-e^{y+ix}-e^{y-ix}}{4i}}

\rm{=\dfrac{2\,e^{-y+ix}-2\,e^{y-ix}}{4i}}

\rm{=\dfrac{e^{-y+ix}-e^{y-ix}}{2i}}

\rm{=-\,\dfrac{e^{y-ix}-e^{-y+ix}}{2i}}

\rm{=-\,\dfrac{e^{y-ix}-e^{-(y-ix)}}{2i}}

\rm{=-\,sinh\left(y-ix\right)}

Similar questions