Math, asked by Anonymous, 1 day ago


  \red \star \: \bf\underline{Solve \:  for \:  limit} \:  \\  \purple{ \displaystyle \lim_{n \to \infty} \frac{1}{n} \biggl \{ \displaystyle{\prod_{r = 1} ^{n}} (m + r) \biggl \} {}^{ \frac{1}{n} } }

Answers

Answered by SANDHIVA1974
41

Answer:

∑nr(r+1

(2r+3)=r=1∑n(2r3+3r2+2r2+3r)=r=1∑n(2r3+5r2+3r)

=2(2n(n+1))2+5(6n(n+1)(2n+1))+3(2n(n+1))

=21(n2(n2+1+2n))+65(n(2n2+3n+1))+23(n2+n)

=21(n4+2n3+n2)+65(2n3+3n2+n)+23(n2+n)

=21n4+616n3+29n2+614n

BRO HENCE IS NOT VERTIFIED

Similar questions