Math, asked by Atlas99, 1 month ago


  \red{\tt \: If{\Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{ \sqrt{x - 5}} = a^{0},\:then \: find \: the \: value \: of \: x.}}
Please slide right to left for full question.
Needed step by step explanation.
All types of spam are strictly prohibited.

Thank you.​

Answers

Answered by ItzShizuka50
61

Question:-

{\tt \: If{\Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{ \sqrt{x - 5}}  =  {a}^{0} }}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

To find it:-

  • Find the value of x.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answer

 \bold{(a \neq \: 0)}

{\tt \: {\Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{ \sqrt{x - 5}} = a^{0} = 1}}

 \bold{\implies \: {\tt \:{\ \bigg[ { \bigg( \frac{2}{3}\bigg)^{ \frac{5}{9} } }\bigg]^{ \sqrt{x - 5}} = 1{}}}}

 \bold{(aᵐ)ⁿ = aᵐⁿ}

  \mathbb{\implies( \frac{2}{3}) \frac{5}{5}   \sqrt{a - 5} = 1 }

 \bold{ \implies \: ( \frac{2}{3} )⁰}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\mathsf\purple{❤|•ItzShizuka50•|❤}

Answered by BrainlyArnab
10

 \huge \red{ \boxed{ \fcolorbox{blue}{magenta}{ \bf \orange{x} =  \green{5}}}}

Step-by-step explanation:

QUESTION :-

\tt \: If{\Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{ \sqrt{x - 5}} = a^{0}}, \\  \tt\:then \: find \: the \: value \: of \: x.

_______________________

SOLUTION :-

We know that,

any number's power raised to 0 = 1

So,

a⁰ = 1

 \bf =  > {\Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{ \sqrt{x - 5}} = a^{0}} \\  \\  \bf =  > \Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{ \sqrt{x - 5}} =1

 \bf =  >{\Bigg[ \bigg( \frac{2}{3}\bigg)^{ \frac{5}{9}} }\Bigg]^{ \sqrt{x - 5}} = 1... \tiny \{{using \:  \sqrt[m]{ {x}^{n} }    =  {x}^{ \frac{n}{m} } } \} \\

 \bf =  >  \bigg( \frac{2}{3}  \bigg) {}^{ \frac{5}{9} \times  \sqrt{x - 5}  }  = 1... \tiny{ \{using {(x {}^{m}) }^{n}  =  {x}^{m \times n}  \}} \\

As mentioned above,

any number's power 0 = 1

Opposite of this statement can be,

1 = any number's power 0

   =  > 1 = ( \frac{2}{3}  {)}^{0}

So,

 \bf =  >  \bigg( \frac{2}{3}  \bigg) {}^{ \frac{5 \sqrt{x - 5} }{9} }  =  \bigg( \frac{2}{3}  { \bigg)}^{0}  \\

 \bf =  >  \frac{5 \sqrt{x - 5} }{9}  = 0... \tiny{ \{using \:  {x}^{m}  =  {x}^{n}  =  > m = n \}} \\  \\  \bf =  > 5 \sqrt{x - 5}  = 0 \times 9 \\  \\  \bf =  >  \sqrt{x - 5}  =  \frac{0}{5}  \\   \\  \bf =  >  \sqrt{x - 5}  = 0 \\  \\  \{by \: squaring \: both \: sides \} \\  \\  \bf =  > x - 5 = 0 \\  \\   =  >  \large \fcolorbox{red}{pink}{ \bf \blue{x = 5}} \\

Hence,

The value of x = 5.

_______________________

VERIFICATION :-

x = 5

[any number's power raised to 0 = 1]

 \bf =  >\Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{ \sqrt{x - 5}} = a^{0} \\  \\ \bf =  > \Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{ \sqrt{5 - 5}} = 1 \\  \\  \bf =   > \Bigg[ \sqrt[9]{ \bigg( \frac{2}{3}\bigg)^{5} }\Bigg]^{0} = 1 \\  \\  \bf =  > 1 = 1 \\  \\  \bf =  > LHS = RHS

Hence Verified.

______________________

Hope it helps.

#BeBrainly :-)

Similar questions