Prove it
Answers
To Prove :-
Proof :-
Let us start with LHS first. We have,
Now for RHS:-
- Hence,L. H.S =R.H.S
(Proved)
______________________________________
Step-by-step explanation:
Proof :-
Let us start with LHS first. We have,
:\implies\rm{LHS=\dfrac{1}{cosecA-cotA}-\dfrac{1}{sinA}}:⟹LHS=
cosecA−cotA
1
−
sinA
1
:\implies\rm{LHS=\dfrac{1}{(cosecA-cotA)}\times{}\dfrac{(cosecA+cotA)}{(cosecA+cotA)}-\dfrac{1}{sinA}}:⟹LHS=
(cosecA−cotA)
1
×
(cosecA+cotA)
(cosecA+cotA)
−
sinA
1
:\implies\rm{LHS=\dfrac{cosecA+cotA}{cosec^2A-cot^2A}-cosecA}:⟹LHS=
cosec
2
A−cot
2
A
cosecA+cotA
−cosecA
:\implies\rm{LHS=cosecA+cotA-cosecA\quad\quad\:\:[{\because}\:cosec^2A-cot^2A=1]}:⟹LHS=cosecA+cotA−cosecA[∵cosec
2
A−cot
2
A=1]
:\implies\rm{LHS=cotA\longrightarrow{(1)}}:⟹LHS=cotA⟶(1)
Now for RHS:-
:\implies\rm{RHS=\dfrac{1}{sinA}-\dfrac{1}{cosecA+cotA}}:⟹RHS=
sinA
1
−
cosecA+cotA
1
:\implies\rm{RHS=\dfrac{1}{sinA}-\dfrac{cosecA-cotA}{(cosecA+cotA)(cosecA-cotA)}}:⟹RHS=
sinA
1
−
(cosecA+cotA)(cosecA−cotA)
cosecA−cotA
:\implies\rm{RHS=\dfrac{1}{sinA}-\dfrac{cosecA-cotA}{cosec^2A-cot^2A}}:⟹RHS=
sinA
1
−
cosec
2
A−cot
2
A
cosecA−cotA
:\implies\rm{RHS=cosecA-(cosecA-cotA)\quad\quad[{\because}\:cosec^2A-cot^2A=1]}:⟹RHS=cosecA−(cosecA−cotA)[∵cosec
2
A−cot
2
A=1]
:\implies\rm{RHS=cotA\longrightarrow{(2)}}:⟹RHS=cotA⟶(2)
Hence,L. H.S =R.H.S
(Proved)