Math, asked by rishika1088, 6 months ago


 \rm \:  \dfrac{cos \theta - sin \theta + 1}{cos \theta + sin \theta - 1}  = cosec \theta + cot \theta
solve this fast​

Answers

Answered by ILLUSTRIOUS27
1

Given-

 \bf \: \dfrac{cos \theta - sin \theta + 1}{cos \theta + sin \theta - 1} = cosec \theta + cot \theta

Concept used-

  •  \bf cosec \theta =  \dfrac{1}{sin \theta}
  •  \bf \:  \dfrac{cos \theta}{sin \theta}  =  cot \theta
  •  \bf \: 1 =  {cosec}^{2}  \theta -  {cot}^{2}  \theta

Proof-

Divide numerator and denominator of LHS by sinQ

LHS-

 \bf   \cfrac{ \cfrac{cos \theta}{sin \theta} -  \cfrac{sin \theta}{sin \theta}  +  \cfrac{1}{sin \theta}   }{ \cfrac{cos \theta}{sin \theta}  +  \cfrac{sin \theta}{sin \theta}  -  \cfrac{1}{sin \theta} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies \bf  \cfrac{cot \theta - 1 + cosec \theta}{cot \theta + 1 - cosec \theta} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \bf \cfrac{cot \theta + cosec \theta - ( {cosec}^{2}  \theta -  {cot}^{2} \theta) }{cot \theta   -   cosec \theta   + 1 \theta  }   \\  \\  \implies \bf \cfrac{cot \theta + cosec \theta \{1 - cosec \theta + cot \theta \}}{cot \theta   -  cosec \theta + 1 }  \\  \\  \implies \underline{ \boxed{ \bf \: LHS = cot \theta + cosec \theta}}

RHS=cotQ+cosecQ

LHS=RHS

Hence proved

Similar questions