Math, asked by sajan6491, 16 days ago

 \rm Find  \: f_x  \: and  \: f_y \:  where  \: \rm f(x,y)=cos(x^2y)+y^3

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x,y)=cos(x^2y)+y^3 \\

can be rewritten as

\rm \: f=cos(x^2y)+y^3 \\

On differentiating partially w. r. t. x, we get

\rm \: \dfrac{\partial }{\partial x}f=\dfrac{\partial }{\partial x}[cos(x^2y)+y^3 ]\\

\rm \: f_x=\dfrac{\partial }{\partial x}cos(x^2y)+\dfrac{\partial }{\partial x}y^3 \\

\rm \: f_x= - sin( {x}^{2}y) \dfrac{\partial }{\partial x}(x^2y) + 0\\

\rm \: f_x= - y \: sin( {x}^{2}y) \dfrac{\partial }{\partial x}(x^2)\\

\rm \: f_x= - y \: sin( {x}^{2}y) (2x)\\

\rm \: f_x= -2x y \: sin( {x}^{2}y) \\

So,

\rm\implies \:\boxed{ \rm{ \:\rm \: f_x= -2x y \: sin( {x}^{2}y)  \: }}\\

Now, Consider again

\rm \:f =cos(x^2y)+y^3 \\

On differentiating partially w. r. t. y, we get

\rm \:\dfrac{\partial }{\partial y}f =\dfrac{\partial }{\partial y}[cos(x^2y)+y^3] \\

\rm \:f_y =\dfrac{\partial }{\partial y}cos(x^2y)+\dfrac{\partial }{\partial y}y^3 \\

\rm \:f_y = - sin( {x}^{2}y)\dfrac{\partial }{\partial y}(x^2y) + 3y^2 \\

\rm \:f_y = - {x}^{2}  sin( {x}^{2}y)\dfrac{\partial }{\partial y}(y) + 3y^2 \\

\rm \:f_y = - {x}^{2}  sin( {x}^{2}y) + 3y^2 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \:f_y = - {x}^{2}  sin( {x}^{2}y) + 3y^2  \: }}\\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\dfrac{\partial }{\partial x}cosx \:  =  \:  -  \: sinx \: }} \\

\boxed{ \rm{ \:\dfrac{\partial }{\partial x} {x}^{n}  \:  =   \:  {nx}^{n - 1}  \: }} \\

\boxed{ \rm{ \:\dfrac{\partial }{\partial x}k \:  =  \: 0 \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions