Math, asked by sajan6491, 16 days ago

 \rm Find  \: the \:  value \:  of \:   \dfrac{\partial^2r}{\partial x^2}  +  \dfrac{\partial^2r}{\partial y^2} \\   \rm when \: r =  {ax}^{2}  + 2hxy +  {by}^{2}

Answers

Answered by anindyaadhikari13
46

Solution:

Given That:

\rm\longrightarrow r =ax^{2}+2hxy+by^{2}

Partial differentiating both sides with respect to x, we get:

\rm\longrightarrow \dfrac{\partial r}{\partial x} =\dfrac{\partial}{\partial x}(ax^{2}+2hxy+by^{2})

\rm\longrightarrow \dfrac{\partial r}{\partial x} =2ax + 2hy + 0

\rm\longrightarrow \dfrac{\partial r}{\partial x} =2ax + 2hy

Again partial differentiating both sides with respect to x, we get:

\rm\longrightarrow \dfrac{\partial^{2} r}{\partial x^{2}} =2a+0

\rm\longrightarrow \dfrac{\partial^{2} r}{\partial x^{2}} =2a-(i)

Now, partial differentiating both sides with respect to y, we get:

\rm\longrightarrow \dfrac{\partial r}{\partial y} =\dfrac{\partial}{\partial y}(ax^{2}+2hxy+by^{2})

\rm\longrightarrow \dfrac{\partial r}{\partial y} =0+2hx+2by

\rm\longrightarrow \dfrac{\partial r}{\partial y} =2hx+2by

Partial differentiating both sides with respect to y, we get:

\rm\longrightarrow \dfrac{\partial^{2} r}{\partial y^{2}} =0+2b

\rm\longrightarrow \dfrac{\partial^{2} r}{\partial y^{2}} =2b-(ii)

Adding (i) and (ii), we get:

\rm\longrightarrow \dfrac{\partial^{2} r}{\partial x^{2}} +\dfrac{\partial^{2} r}{\partial y^{2}} =2a+2b

\rm\longrightarrow \dfrac{\partial^{2} r}{\partial x^{2}} +\dfrac{\partial^{2} r}{\partial y^{2}} =2(a+b)

Which is our required answer.

Answer:

\rm\hookrightarrow \dfrac{\partial^{2} r}{\partial x^{2}} +\dfrac{\partial^{2} r}{\partial y^{2}} =2(a+b)


anindyaadhikari13: Thanks for the brainliest ^_^
Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given function is

\rm \: r = {ax}^{2} + 2hxy + {by}^{2} \\

On differentiating partially, w. r. t. x, we get

\rm \: \frac{\partial }{\partial x}r = \frac{\partial }{\partial x}({ax}^{2} + 2hxy + {by}^{2}) \\

\rm \: \frac{\partial r}{\partial x} = 2ax + 2hy \\

On differentiating partially w. r. t. x, we get

\rm \: \frac{\partial^{2}  r}{\partial  {x}^{2} } = 2a -  -  - (1) \\

Again,

\rm \: r = {ax}^{2} + 2hxy + {by}^{2} \\

On differentiating partially w. r. t. y, we get

\rm \: \frac{\partial }{\partial y}r = \frac{\partial }{\partial y}({ax}^{2} + 2hxy + {by}^{2}) \\

\rm \: \frac{\partial r}{\partial y}  = 2hx + 2by \\

On differentiating partially w. r. t. y, we get

\rm \: \frac{\partial^{2}  r}{\partial{y}^{2}} = 2b  -  -  - (2)\\

So, on adding equation (1) and (2), we get

\rm \: \dfrac{\partial^2r}{\partial x^2} + \dfrac{\partial^2r}{\partial y^2} = 2a + 2b \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \dfrac{\partial^2r}{\partial x^2} + \dfrac{\partial^2r}{\partial y^2} = 2(a + b )\:  \: }} \\

\rule{190pt}{2pt}

 ADDITIONAL \: INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions