Math, asked by NITESH761, 16 hours ago


\rm Find\: the \: value \: of \: θ
\rm \blue{\sin ^2 θ = \sqrt{3} \cos θ}

Answers

Answered by 6a31rasheen
1

hope it is help full to you have a great day

Attachments:
Answered by MysticSohamS
4

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ value \: of \: θ \\  \\ given :  \\ sin {}^{2}  \: θ =  \sqrt{3} .cos \: θ \\  \\ we \: know \: that \\ sin {}^{2} θ + cos {}^{2} θ = 1 \\ cos {}^{2} θ +  \sqrt{3} .cos \: θ = 1 \\  \\ cos {}^{2} θ +  \sqrt{3} .cos \: θ - 1 = 0 \\ comparing \: this \: quadratic \: equation \\ with  \: \: a.cos {}^{2}  \: θ + b.cos \: θ + c = 0 \\ we \: get \\ a = 1 \\ b =  \sqrt{3}  \\ c =  - 1

now \: we \: know \: that \\ Δ = b {}^{2}  - 4ac \\  \\  = ( \sqrt{3}  \: ) {}^{2}  - 4(1)( - 1) \\  \\  = 3  - ( - 4) \\  \\  = 3 + 4 \\  \\  Δ=  7

applying \: shreedharacharya \:  \\ method \\ we \: get \\  \:  \\ cos \: θ =  \frac{ - b±  \sqrt{b {}^{2}  - 4ac} }{2a}  \\  \\  =  \frac{ -  \sqrt{3}± \:  \sqrt{7}  }{(2 \times 1)}  \\  \\ we \: have \\  \sqrt{3}  = 1.73 \\  \sqrt{7}  = 2.64

thus \: then \\ cos \: θ =  \frac{ -  \sqrt{3} +  \sqrt{7}  }{2}  \:  \: or \:  \:  =  \frac{ -  \sqrt{3}  -  \sqrt{7} }{2}  \\  \\  =  \frac{ - 1.73 + 2.64}{2}  \:  \: or \:  \:  \frac{ - 1.73 - 2.64}{2}  \\  \\  =  \frac{0.91}{2}  \:  \: or \:  \:  =  \frac{ - 4.37}{2}  \\  \\  = 0.455 \:  \: or \:  \:  =  - 2.185 \\  \\ but \: we \: know \: that \\ f(x) \: of \: cos \: x \\ always \: lie \: in \: range \: of \:  \\  - 1 < x < 1 \\  \\ hence \: then \\  \: cos \: θ =  - 2.185 \:  \: is \: absurd \\  \\ thus \: then \\ cos \: θ = 0.455 \\  \\ θ = cos  {}^{ - 1}  \: (0.455) \\  \\ further \: you \: can \: use \: logarithms \\ and \: natural \: cosines \:  \\ section \: in \: log \: book

Similar questions