Math, asked by sajan6491, 10 hours ago

  \rm  \frac{d}{dx}  \bigg( \int_{ {1} }^{ {x}^{2} }  \frac{2t}{1 +  { t }^{2} } dt \cdot \int_{  1}^{lnx}  \frac{1}{(1 + t {)}^{2} } dt \bigg) \\

Answers

Answered by SugarCrash
7

\large\sf\red{\underline{\underline{Question :}}}

  • \displaystyle\dfrac{d}{dx}\left(\int _1 ^{x^{2}} \dfrac{2t}{1+t^2}dt.\int ^{\ln x} _1 \dfrac{1}{(1+t)^2}\right)

\large\sf\red{\underline{\underline{Solution :}}}

= \displaystyle\dfrac{d}{dx}\left(\int _1 ^{x^{2}} \dfrac{2t}{1+t^2}dt.\int ^{\ln x} _1 \dfrac{1}{(1+t)^2}\right)

✮ Integrating :

\boxed{\red\bigstar \displaystyle\int\sf \dfrac{f(x)'}{f(x)}= \log( f(x))}\;\;\;\;\;\;\;\boxed{\red\bigstar\int x^n = \dfrac{x^{n+1}}{n+1}}

= \displaystyle\dfrac{d}{dy}\left( \left[\log(1+t^2)\right]^{x^2} _1 . \int ^{\ln x} _1 (1+t)^{-2} \right)

= \displaystyle\dfrac{d}{dy}\left( \left[\log(1+t^2)\right]^{x^2} _1 . \left[\dfrac{-1}{1+t}\right]^{\ln x} _1 \right)

✮  Substituting limits :  

\rm\displaystyle = \dfrac{d}{dy}\left( \left[\log\left(1+({x^2})^2\right)-\log(1+1^2)\right]. \left[\dfrac{-1}{1+\ln x}-\left(\dfrac{-1}{1+1}\right)\right] \right)

\rm\displaystyle=\dfrac{d}{dy}\left( \left[\log\left(1+x^4\right)-\log(2)\right]. \left[\dfrac{1}{2}-\dfrac{1}{1+\ln x}\right] \right)

✮ Differentaiting using product rule :

  • (UV)' = U'V + V'U
  • \dfrac{d}{dy}\log x = \dfrac{1}{x}

\rm\displaystyle= \dfrac{d}{dy}\left( \left[\log\left(1+x^4\right)-\log(2)\right]\right)'\left[\dfrac{1}{2}-\dfrac{1}{1+\ln x}\right] +\dfrac{d}{dy}\left(\dfrac{1}{2}-\dfrac{1}{1+\ln x}\right)' \;\left[\log\left(1+x^4\right)-\log(2)\right]

\rm\displaystyle=\left(\dfrac{1}{1+x^4}.4x^3-0\right)\left(\dfrac{1}{2}-\dfrac{1}{1+\ln x}\right) +\left(\dfrac{1}{(1+\ln x)^2}.(0+\frac{1}{x})\right)\left(\log\left(1+x^4\right)-\log(2)\right)

\rm\displaystyle=\dfrac{4x^3}{1+x^4}\left(\dfrac{1}{2}-\dfrac{1}{1+\ln x}\right)+\dfrac{\log(1+x^4)-\log 2 }{x(1+\ln x)^2}

\rm\displaystyle=\dfrac{4x^3\left(\frac{1}{2}-\frac{1}{1+\ln x} \right)}{1+x^4} + \dfrac{\log(1+x^4)-\log 2 }{x(1+\ln x)^2}

\large\sf\red{\underline{\underline{Therefore ,}}}

\rm\displaystyle\dfrac{d}{dx}\left(\int _1 ^{x^{2}} \dfrac{2t}{1+t^2}dt.\int ^{\ln x} _1 \dfrac{1}{(1+t)^2}\right)  =\rm \dfrac{4x^3\left(\frac{1}{2}-\frac{1}{1+\ln x} \right)}{1+x^4} + \dfrac{\log(1+x^4)-\log 2 }{x(1+\ln x)^2}

Attachments:
Similar questions