Math, asked by sajan6491, 23 hours ago

 \rm Given  \:  \red{y=f(x_1,x_2)=3x^2_1+x_1x_2+4x_2^2}, \\  \rm find \: their \: partial \: derivatives.

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm \: y=f(x_1,x_2)=3x^2_1+x_1x_2+4x_2^2 \\

On differentiating partially w. r. t.  \rm \: x_1, we get

\rm \: \dfrac{\partial }{\partial x_1}y =\dfrac{\partial }{\partial x_1}(3x^2_1+x_1x_2+4x_2^2) \\

\rm \: \dfrac{\partial y}{\partial x_1} = 3\dfrac{\partial }{\partial x_1} {x_1}^{2}  + x_2\dfrac{\partial }{\partial x_1}x_1 + \dfrac{\partial }{\partial x_1} {4x_2}^{2}  \\

\rm \: \dfrac{\partial y}{\partial x_1} = 3(2x_1) + x_2 \times 1 + 0 \\

\rm\implies \:\bf \: \dfrac{\partial y}{\partial x_1} =6x_1+ x_2  \\

Now, On differentiating partially w. r. t. \rm \: x_2 , we have

\rm \: \dfrac{\partial }{\partial x_2}y =\dfrac{\partial }{\partial x_2}(3x^2_1+x_1x_2+4x_2^2) \\

\rm \: \dfrac{\partial y}{\partial x_2} = \dfrac{\partial }{\partial x_2} 3{x_1}^{2}  + x_1\dfrac{\partial }{\partial x_2}x_2 +4 \dfrac{\partial }{\partial x_2} {x_2}^{2}  \\

\rm \: \dfrac{\partial y}{\partial x_2} = 0 + x_1 \times 1 + 4(2x_2) \\

\rm\implies \:\bf \: \dfrac{\partial y}{\partial x_2} =x_1+ 8x_2  \\

Now,

\rm \: \dfrac{\partial ^{2}y}{\partial x_1 ^{2} } \\

\rm \:  =  \: \dfrac{\partial }{\partial x_1}\bigg(\dfrac{\partial y}{\partial x_1}\bigg)  \\

\rm \:  =  \: \dfrac{\partial }{\partial x_1}(6x_1 + x_2) \\

\rm \:  =  \: 6\dfrac{\partial }{\partial x_1}x_1 + \dfrac{\partial }{\partial x_1}x_2 \\

\rm \:  =  \: 6 \times 1 + 0 \\

\rm \:  =  \: 6 \\

\bf\implies \: \dfrac{\partial ^{2}y}{\partial x_1 ^{2} }  = 6\\

Now,

\rm \: \dfrac{\partial ^{2}y}{\partial x_2 ^{2} } \\

\rm \:  =  \: \dfrac{\partial }{\partial x_2}\bigg(\dfrac{\partial y}{\partial x_2}\bigg)  \\

\rm \:  =  \: \dfrac{\partial }{\partial x_2}(x_1 + 8x_2) \\

\rm \:  =  \: \dfrac{\partial }{\partial x_2}x_1 + 8\dfrac{\partial }{\partial x_2}x_2 \\

\rm \:  =  \: 0 + 8 \times 1 \\

\rm \:  =  \: 8 \\

\bf\implies \: \dfrac{\partial ^{2}y}{\partial x_2 ^{2} }  = 8\\

Now,

\rm \: \dfrac{\partial^{2}y }{\partial x_1 \: \partial x_2} \\

\rm \:  =  \: \dfrac{\partial }{\partial x_1}\bigg(\dfrac{\partial y}{\partial x_2} \bigg)  \\

\rm \:  =  \: \dfrac{\partial }{\partial x_1}(x_1 + 8x_2) \\

\rm \:  =  \: \dfrac{\partial }{\partial x_1}x_1 + \dfrac{\partial }{\partial x_1}8x_2 \\

\rm \:  =  \: 1 + 0 \\

\rm \:  =  \: 1 \\

\bf\implies \: \dfrac{\partial^{2}y }{\partial x_1 \: \partial x_2} = 1 \\

Answered by talpadadilip417
12

Solution :-

Given: \rm y=f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}

To find: Partial derivatives with respect to \rm x_{1} and \rm x_{2}

\[ \begin{aligned}  \rm f_{x_{1}}=\frac{\partial y}{\partial x_{1}} & \rm=\frac{\partial}{\partial x_{1}}\left(3 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}\right) \\\\  & \rm=\frac{\partial}{\partial x_{1}} 3 x_{1}^{2}+\frac{\partial}{\partial x_{1}} x_{1} x_{2}+\frac{\partial}{\partial x_{1}} 4 x_{2}^{2} \\  \\ & \rm=3 \frac{\partial}{\partial x_{1}} x_{1}^{2}+x_{2} \frac{\partial}{\partial x_{1}} x_{1}+0 \\ \\  & \rm=3.2 x_{1}+x_{2} .1 \\ \\   \color{green}\rm f_{x_{1}}=\frac{\partial y}{\partial x_{1}} & \color{green}\rm=6 x_{1}+x_{2} \end{aligned} \]

\[ \begin{aligned} \rm f_{x_{2}}=\frac{\partial y}{\partial x_{2}} & \rm=\frac{\partial}{\partial x_{2}}\left(3 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}\right) \\ \\  & \rm=\frac{\partial}{\partial x_{2}} 3 x_{1}^{2}+\frac{\partial}{\partial x_{2}} x_{1} x_{2}+\frac{\partial}{\partial x_{2}} 4 x_{2}^{2} \\ \\  & \rm=0+x_{1} \frac{\partial}{\partial x_{2}} x_{2}+4 \frac{\partial}{\partial x_{2}} x_{2}^{2} \\ \\  & \rm=x_{1} .1+4.2 x_{2} \\ \\ \color{blue}  \rm f_{x_{2}}=\frac{\partial y}{\partial x_{2}} &\color{blue} \rm=x_{1}+8 x_{2} \end{aligned} \]

Similar questions
English, 23 hours ago