Math, asked by sajan6491, 1 day ago

 \rm Given  \\  \rm f(x,y) = x( {x}^{2}  +  {y}^{2} )^{ \frac{ - 3}{2} }  {e}^{sin( {x}^{2}y) }   \\ \rm find \:  f_{x}(1,0)

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x,y) = x( {x}^{2} + {y}^{2} )^{ \frac{ - 3}{2} } {e}^{sin( {x}^{2}y) } \\

So,

\rm \: f(1,0) = 1( {1}^{2} + {0}^{2} )^{ \frac{ - 3}{2} } {e}^{sin( {1}^{2} \times 0) } \\

\rm \: f(1,0) = ( 1 + 0)^{ \frac{ - 3}{2} } {e}^{sin0} \\

\rm \: f(1,0) = 1 \times  {e}^{0} \\

\rm\implies \:\rm \: f(1,0) = 1 \\

Now, Consider again

\rm \: f(x,y) = x( {x}^{2} + {y}^{2} )^{ \frac{ - 3}{2} } {e}^{sin( {x}^{2}y) } \\

can be rewritten as

\rm \: f = x( {x}^{2} + {y}^{2} )^{ \frac{ - 3}{2} } {e}^{sin( {x}^{2}y) } \\

On taking log on both sides, we get

\rm \:log f = logx -  \frac{3}{2}log( {x}^{2} + {y}^{2} ) + {sin( {x}^{2}y)}loge \\

\rm \:log f = logx -  \frac{3}{2}log( {x}^{2} + {y}^{2} ) + {sin( {x}^{2}y)} \\

On differentiating partially w. r. t. x, we get

\rm \:\dfrac{\partial }{\partial x}log f = \dfrac{\partial }{\partial x}logx -  \frac{3}{2}\dfrac{\partial }{\partial x}log( {x}^{2} + {y}^{2} ) + \dfrac{\partial }{\partial x}{sin( {x}^{2}y)} \\

\rm \: \frac{1}{f} \dfrac{\partial f}{\partial x}= \dfrac{1}{x} -  \frac{3}{2} \times \dfrac{2x }{ {x}^{2}  +  {y}^{2} } +  {cos( {x}^{2}y)}(2xy) \\

\rm \: \frac{1}{f} \dfrac{\partial f}{\partial x}= \dfrac{1}{x} - \dfrac{3x}{ {x}^{2}  +  {y}^{2} } + 2xy{cos( {x}^{2}y)} \\

\rm \: \dfrac{\partial f}{\partial x}= f\bigg(\dfrac{1}{x} - \dfrac{3x}{ {x}^{2}  +  {y}^{2} } + 2xy{cos( {x}^{2}y)} \bigg)\\

\rm\implies \:\rm \: f_x= f(x,y)\bigg(\dfrac{1}{x} - \dfrac{3x}{ {x}^{2}  +  {y}^{2} } + 2xy{cos( {x}^{2}y)} \bigg)\\

Now, on substituting x = 1 and y = 0, we get

\rm \: f_x(1,0)= f(1,0)\bigg(\dfrac{1}{1} - \dfrac{3 \times 1}{ {1}^{2}  +  {0}^{2} } + 2(1)(0){cos(0)} \bigg)\\

\rm \: f_x(1,0)= 1 \times \bigg(1 - 3 + 0 \bigg)\\

\rm\implies \:\rm \: f_x(1,0) \: =  \:  -  \: 2\\

\rule{190pt}{2pt}

Additional Information :

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
16

Question:-

 \sf  \large f(x,y) = x( {x}^{2} + {y}^{2} )^{ \frac{ - 3}{2} } {e}^{sin( {x}^{2}y) }  \\ \sf \large find \: f_{x}(1,0).

Given:-

 \sf \large f(x,y) = x( {x}^{2} + {y}^{2} )^{ \frac{ - 3}{2} } {e}^{sin( {x}^{2}y) } .

To Find:-

 \sf \large find \: f_{x}(1,0).

Solution:-

 \sf \large f(x,y) = x(x {}^{2}  + y {}^{2} ) {}^{ \frac{ - 3}{2}   }  e {}^{sin(x {}^{2} y)}

 \sf \large f_{x} =  \frac{∂}{∂x}  \: f(x,y) \\  \\  \sf \large y⇒constant.

 \sf \large f_{x} = (x {}^{2}  + y {}^{2} ) {}^{ \frac{ - 3}{2} } e {}^{sin(x {}^{2}y) }  \frac{∂}{∂x} (x) + x \:  \: e {}^{sin(x {}^{2} y)}  \frac{∂}{∂x} (x {}^{2}  + y {}^{2} ) {}^{ \frac{ - 3}{2} }  + x(x {}^{2}  + y {}^{2} ) {}^{  \frac{ - 3}{2} }  \frac{∂}{∂x} e {}^{sin(x {}^{2}y) }

 \sf \large = (x {}^{2}  + y {}^{2} ) {}^{ \frac{ - 3}{  2} } e {}^{sin(x {}^{2}y) } (1) + x \: e {}^{sin(x {}^{2}y)   } \bigg( \frac{ - 3}{2}  \bigg)(x  {}^{2}   + y {}^{2} ) {}^{  \frac{ - 5}{2} } (2x) + x(x {}^{2}  + y {}^{2} ) {}^{ \frac{ - 3}{2} } e {}^{sin(x {}^{2}y) }  \: cos(x {}^{2} y)(2x)(y)

 \sf \large f_{x}(1,0)

 \sf \large = (1) {}^{  \frac{ - 3}{2} } (1) + (1)(1) \bigg( \frac{ - 3}{2}  \bigg)(1)(2) + (1)(1)(1)(1)(2)(0)

 \sf \large = 1 - 3 + 0 =  - 2

Answer:-

 { \boxed{ \rm  \huge \color{red}{f_{x}(1,0) =  - 2.}}}

Hope you have satisfied.

Similar questions