Physics, asked by TheMoonlìghtPhoenix, 5 months ago


 \rm{  \green{Hello \:  Brainlians! }}
Please help me to solve this Question.
 \bf{ \orange{Given  \ Information}}
Two blocks P and Q of equal masses 1 kg are placed on a rough inclined plane. Initially the block P is \sf{\sqrt{2}} m behind the block Q. While moving down the incline, block P and Q experience a retarding force \sf{\sqrt{2 \ N}} and \sf{\dfrac{3}{\sqrt{2}}} N respectively.
1. If the two blocks are released simultaneously, then find the time taken by the blocks to come on the same line on the inclined plane as shown in the figure.

2.Find the distance travelled by the blocks along the incline till they come on the same line on the inclined plane.
Please, do not spam. Best answer will be marked as Brainliest.
 \sf{ \purple{Bonne \ Chance!}}

Attachments:

Answers

Answered by rocky200216
222

\huge\bf{\underbrace{\gray{SOLUTION:-}}}

☯︎ First of all, we need to calculate the value of "coefficient of friction betⁿ plane and block P" and "coefficient of friction betⁿ plane and block Q" .

✯ Frictional force acting on block P is,

\huge\red\checkmark \bf{F_{P}\:=\:N_P\:\times{\mu}_P\:} \\

\bf{:\implies\:F_{P}\:=\:m_{P}\:g\cos{45^{\degree}}\times{\mu}_P\:} \\

☞︎︎︎ It is given that,

  • \bf\red{F_{P}} = \bf{\sqrt{2}\:N}

  • \bf\red{m_{P}} = 1 kg

  • \bf\red{g} = 10 m/

\rm{:\implies\:\sqrt{2}\:=\:1\times{10}\times{\dfrac{1}{\sqrt{2}}}\times{\mu}_{P}\:} \\

\rm{:\implies\:{\mu}_{P}\:=\:\dfrac{\sqrt{2}\times\:\sqrt{2}}{10}\:} \\

\rm{:\implies\:\mu_{P}\:=\:\dfrac{2}{10}\:} \\

\bf\green{:\implies\:\mu_{P}\:=\:0.2\:N\:} \\

✯ Again frictional force acting on block Q is,

\huge\red\checkmark \bf{F_{Q}\:=\:N_Q\:\times{\mu}_Q\:} \\

\bf{:\implies\:F_{Q}\:=\:m_{Q}\:g\cos{45^{\degree}}\times{\mu}_Q\:} \\

☞︎︎︎ It is given that,

  • \bf\red{F_{Q}} = \bf{\dfrac{3}{\sqrt{2}}\:N}

  • \bf\red{m_{Q}} = 1 kg

  • \bf\red{g} = 10 m/s²

\rm{:\implies\:\dfrac{3}{\sqrt{2}}\:=\:1\times{10}\times{\dfrac{1}{\sqrt{2}}}\times{\mu}_{Q}\:} \\

\rm{:\implies\:\mu_{Q}\:=\:\dfrac{\sqrt{2}\times\:\dfrac{3}{\sqrt{2}}}{10}\:} \\

\rm{:\implies\:\mu_{Q}\:=\:\dfrac{3}{10}\:} \\

\bf\green{:\implies\:\mu_{Q}\:=\:0.3\:N\:} \\

☯︎ Now, we have to calculate the acceleration of each block . For acceleration see the attachment figure-2 .

✞︎ Hence relative acceleration is,

\huge\red\checkmark \bf\purple{a_{relative}\:=\:a_P\:-\:a_Q\:} \\

\rm{:\implies\:a_{rel}\:=\:g\:(\sin{\theta}\:-\:\mu_{P}\:\cos{\theta})\:-\:g\:(\sin{\theta}\:-\:\mu_{Q}\:\cos{\theta})\:} \\

\rm{:\implies\:a_{rel}\:=\:g\:(\sin{\theta}\:-\:\mu_{P}\:\cos{\theta}\:-\:\sin{\theta}\:+\:\mu_{Q}\:\cos{\theta})\:} \\

\rm{:\implies\:a_{rel}\:=\:g\:(-\:\mu_{P}\:\cos{\theta}\:+\:\mu_{Q}\:\cos{\theta})\:} \\

\rm{:\implies\:a_{rel}\:=\:g\:\Big(-0.2\:\cos{45^{\degree}}\:+\:0.3\:\cos{45^{\degree}}\Big)\:} \\

\rm{:\implies\:a_{rel}\:=\:10\:\Big(-0.2\times{\dfrac{1}{\sqrt{2}}}\:+\:0.3\times{\dfrac{1}{\sqrt{2}}}\Big)\:} \\

\rm{:\implies\:a_{rel}\:=\:10\:\Big(-\dfrac{0.2}{\sqrt{2}}\:+\:\dfrac{0.3}{\sqrt{2}}\Big)\:} \\

\rm{:\implies\:a_{rel}\:=\:10\:\Big(\dfrac{0.3\:-\:0.2}{\sqrt{2}}\Big)\:} \\

\rm{:\implies\:a_{rel}\:=\:10\times{\dfrac{0.1}{\sqrt{2}}}\:} \\

\bf\green{:\implies\:a_{relative}\:=\:\dfrac{1}{\sqrt{2}}\:m/s^2\:} \\

➪ Initially, block's are in rest .

\green\bigstar\:\bf\orange{S_{rel}\:=\:\dfrac{1}{2}\:a_{rel}\:t^2\:} \\

  • \bf\red{S_{rel}} = \bf{\sqrt{2}\:m}

\rm{:\implies\:\sqrt{2}\:=\:\dfrac{1}{2}\times{\dfrac{1}{\sqrt{2}}}\times{t^2}\:} \\

\rm{:\implies\:\sqrt{2}\:=\:\dfrac{1}{2\sqrt{2}}\times{t^2}\:} \\

\rm{:\implies\:t^2\:=\:\sqrt{2}\times{2\sqrt{2}}\:} \\

\rm{:\implies\:t^2\:=\:4\:} \\

\rm{:\implies\:t\:=\:\sqrt{4}\:} \\

\bf\blue{:\implies\:t\:=\:2\:second} \\

\huge\red\therefore [1] If the two blocks are released simultaneously, then the time taken by the blocks to come on the same line on the inclined plane is "2 second" .

__________________________

✯ Distance moved by block P in this time period is,

\purple\bigstar\:\bf\pink{S_{P}\:=\:\dfrac{1}{2}\:a_{P}\:t^2\:} \\

\rm{:\implies\:S_{P}\:=\:\dfrac{1}{2}\:\Big\{g\:(\sin{\theta}\:-\:\mu_{P}\:\cos{\theta})\Big\}\:t^2\:} \\

\rm{:\implies\:S_{P}\:=\:\dfrac{1}{2}\times{10}\:(\sin{45^{\degree}}\:-\:0.2\:\cos{45^{\degree}})\:\times{2^2}\:} \\

\rm{:\implies\:S_{P}\:=\:20\times{\dfrac{1}{\sqrt{2}}}\:(1\:-\:0.2)\:} \\

\rm{:\implies\:S_{P}\:=\:10\sqrt{2}\times\:0.8\:} \\

\bf\blue{:\implies\:S_{P}\:=\:8\sqrt{2}\:m} \\

\huge\red\therefore Distance moved by block P in this time period is "82 m" .

✯ Distance moved by block Q in this time period is,

\purple\bigstar\:\bf\pink{S_{Q}\:=\:\dfrac{1}{2}\:a_{Q}\:t^2\:} \\

\rm{:\implies\:S_{Q}\:=\:\dfrac{1}{2}\:\Big\{g\:(\sin{\theta}\:-\:\mu_{Q}\:\cos{\theta})\Big\}\:t^2\:} \\

\rm{:\implies\:S_{Q}\:=\:\dfrac{1}{2}\times{10}\:(\sin{45^{\degree}}\:-\:0.3\:\cos{45^{\degree}})\:\times{2^2}\:} \\

\rm{:\implies\:S_{P}\:=\:20\times{\dfrac{1}{\sqrt{2}}}\:(1\:-\:0.3)\:} \\

\rm{:\implies\:S_{P}\:=\:10\sqrt{2}\times\:0.7\:} \\

\bf\blue{:\implies\:S_{P}\:=\:7\sqrt{2}\:m} \\

\huge\red\therefore Distance moved by block Q in this time period is "72 m" .

Attachments:

TheMoonlìghtPhoenix: Thank you!
EliteSoul: Great!
Answered by Anonymous
144

Given :

  • Mass of blocks P and Q , M = 1 kg
  • Intitally the block P is √2 m behind the block Q .
  • While moving down the incline, block P and Q experience a retarding force \sf{\sqrt{2}}N and \sf{\dfrac{3}{\sqrt{2}}} N

To Find :

  1. If the two blocks are released simultaneously, then find the time taken by the blocks to come on the same line on the inclined plane as shown in the figure.
  2. Find the distance travelled by the blocks along the incline till they come on the same line on the inclined plane.

Solution :

Before solving the question , First draw the free body diagram of given scenario.

1) We have to find the time taken by the blocks to come on the same line on the inclined plane. If the two blocks are released simultaneously.

Let the accelaration of block P and Q be \sf\:a_1\:and\:a_2

From the free body diagram :

Forces acting on Block P

\sf\:Mg\sin45-F_1=Ma_1

\sf\implies\:a_1=\dfrac{Mg\sin\:45-F_1}{M}

\sf\implies\:a_1=g\sin\:45-F

\sf\implies\:a_1=10\times\dfrac{1}{\sqrt{2}}-\sqrt{2}

\sf\implies\:a_1=\dfrac{10-2}{\sqrt{2}}

\sf\implies\:a_1=\dfrac{8}{\sqrt{2}}

\sf\implies\:a_1=4\sqrt{2}

Forces acting on Block Q

\sf\:Mg\sin45-F_2=Ma_2

\sf\implies\:a_2=\dfrac{Mg\sin\:45-F_2}{M}

\sf\implies\:a_2=g\sin\:45-F_2

\sf\implies\:a_2=10\times\dfrac{1}{\sqrt{2}}-\dfrac{3}{\sqrt{2}}

\sf\implies\:a_2=\dfrac{10-3}{\sqrt{2}}

\sf\implies\:a_2=\dfrac{7}{\sqrt{2}}

\sf\implies\:a_2=3.5\sqrt{2}

Now Acceleration of Q observed by P

\sf\:a_{21}=a_2-a_1=0.5\sqrt{2}

By equation of motion :

\sf\triangle\:S=ut+\dfrac{1}{2}\times\:a_{21}t^2

\sf\sqrt{2}=0+\dfrac{1}{2}\times0.5\sqrt{2}t^2

\sf\:t^2=\dfrac{\sqrt{2}\times2}{0.5\times\sqrt{2}}

\sf\:t^2=4

\sf\:t=2\:sec

Therefore , the time taken by the blocks to come on the same line on the inclined plane is 2 sec.

2) We have to find the distance travelled by the blocks along the incline till they come on the same line on the inclined plane.

Distance travelled by Block

\sf\:S_1=ut+\dfrac{1}{2}\times\:a_{1}t^2

Put the value of \sf\:a_1=4\sqrt{2}

\sf\implies\:S_1=0+\dfrac{1}{2}\times\:4\sqrt{2}\times4

\sf\implies\:S_1=8\sqrt{2}m

Similarly ,

Distance travelled by Block Q

\sf\:S_2=ut+\dfrac{1}{2}\times\:a_{2}t^2

Put the value of \sf\:a_2=3.5\sqrt{2}

\sf\implies\:S_2=0+\dfrac{1}{2}\times\:3.5\sqrt{2}\times4

\sf\implies\:S_2=7\sqrt{2}m

Hence ,the distance travelled by the block P and Q along the incline till they come on the same line on the inclined plane is 8√2 and 7√2 m.

Attachments:

TheMoonlìghtPhoenix: Thank you!
amitkumar44481: Perfect :-)
EliteSoul: Awesome!
Similar questions