Math, asked by Anonymous, 7 months ago

{ \rm{ \huge \underline{Prove \: It }}}


 { \rm{\dfrac{sin \: A - cos \: A + 1}{sin \: A + cos \: A - 1} = \dfrac{cos \: A}{1 - sin \:A} }}

Answers

Answered by Anonymous
12

Solution:-

 \rm \implies \dfrac{ \sin \: A  -  \cos A   + 1}{\sin \: A   +  \cos  A    - 1}  =  \dfrac{ \cos A }{1 -  \sin A }

Using cross multiplication method

 \rm \:  \implies(1 -  \sin A)( \sin  A -  \cos  A + 1)  =  \cos A( \sin A +  \cos  A - 1)

 \rm \implies \:  \sin  A  -  \cos A + 1 -  \sin {}^{2} A +  \cos A \sin  A -  \sin A =   \\  \rm\cos A \sin  A  +  \cos {}^{2} A -  \cos  A

\rm \implies \:  \sin  A  -  \cos A + 1 -  \sin {}^{2} A + \cancel{  \cos A \sin  A} -  \sin A =   \\  \rm \cancel{\cos A \sin  A}  +  \cos {}^{2} A -  \cos  A

\rm \implies \:  \sin  A  -  \cos A + 1 -  \sin {}^{2} A  -  \sin A =    \rm    \cos {}^{2} A -  \cos  A

\rm \implies \:  \cancel{ \sin  A } -   \cancel{\cos A} + 1 -  \sin {}^{2} A  -   \cancel{\sin A }=    \rm    \cos {}^{2} A -   \cancel{\cos  A}

 \rm \implies \: 1 -  \sin {}^{2} A =  \cos {}^{2} A

\rm \implies \: 1 =  \cos {}^{2} A + \sin {}^{2} A

 \implies1 = 1

LHS = RHS

Hence proved

Similar questions