Math, asked by Kabhita565, 4 months ago

\rm If\:  \:  \dfrac{3 {a}^{2} +2  {b}^{2}  }{2 {b}^{2} -  {a}^{2}  }  = \dfrac{15}{7}   \:  \: and  \: \:  {a}^{2}  :  {b}^{2}  = m : n. \: Then \: m - n = ..

Answers

Answered by Anonymous
116

\sf :\implies  \dfrac{3 {a}^{2} +2  {b}^{2}  }{2 {b}^{2} -  {a}^{2}  }  = \dfrac{15}{7}\\\\

By cross multiplication:-

\\ \implies \sf 7(3 {a}^{2} +2  {b}^{2})   = 15(2 {b}^{2} -  {a}^{2} )\\\\

:\implies \sf 21 {a}^{2} +14 {b}^{2}  = 30 {b}^{2} -  15{a}^{2} \\\\

:\implies \sf 21 {a}^{2} +15{a}^{2}  = 30 {b}^{2} - 14{b}^{2}\\\\

:\implies \sf 36{a}^{2}  = 16 {b}^{2} \\\\

:\implies \sf \dfrac{ {a}^{2} }{ {b}^{2} }  =  \dfrac{16}{36}\\\\

:\implies \sf \dfrac{ {a}^{2} }{ {b}^{2} }  =  \dfrac{4}{9}\\\\

 \underline{ \boxed{  \red{\sf :\implies { {a}^{2} } : { {b}^{2} }  =  {4} : {9}}}}\\\\

 \sf \green { Given , \: { {a}^{2} } : { {b}^{2} }  =  m :n}\\

 \sf \green { Comparing \: { {a}^{2} } : { {b}^{2} }  =  m :n \: (with) \: { {a}^{2} } : { {b}^{2} }  =  {4} : {9}}\\\\

 \sf \purple{ : \implies m = 4 \:  \: and \:  \: n = 9}\\\\

Find the Value of m - n

 \sf : \implies m  - n  \: =  \: 4 - 9 \:  =  \:  - 5\\

  \underline{ \boxed{  \purple{\sf \therefore m  - n   \:  =  \:   - 5}}}\\\\

Answered by OoINTROVERToO
4

-5

Step-by-step explanation:

(3a² +2b²)/(2b² − a²) = 15/7

7(3a² +2b²) = 15(2b² − a²)

21a² + 14b² = 30b² − 15a²

21a² +15a² = 30b² − 14b²

36a² = 16b²

a²/b² = 16/36

a²/b² = 4/9

a² : b² = 4 : 9

GIVEN

  • : b² = m : n
  • m : n = 4 : 9
  • m = 4
  • n = 9

NOW

m - n = 4 - 9 = -5

Similar questions