Math, asked by sajan6491, 3 days ago

 \rm{If \:  f=a_0x^n+a_1x^{n-1}y\dots+a_{n-1}xy^{n-1}+a_ny^n} \\  \rm then \: x \frac{ \partial f}{ \partial x}  +  \frac{ \partial f}{ \partial y}  \: is

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm \: f=a_0x^n+a_1x^{n-1}y\dots+a_{n-1}xy^{n-1}+a_ny^n \\

can be rewritten as

\rm \: f= {x}^{n}\bigg( a_0+a_1 \frac{y}{x} \dots+a_{n-1}\dfrac{ {y}^{n - 1} }{ {x}^{n - 1} } +a_n \frac{ {y}^{n} }{ {x}^{n} }\bigg)  \\

\rm\implies \:\rm \: f \:is \: a \: homogenous \: function \: of \: degree \: n \\

We know, Euler's Theorem :- This theorem states that if u is a homogeneous function of x and y of degree n then

\boxed{ \rm{ \:x\dfrac{\partial u}{\partial x} \: + \:  y\dfrac{\partial u}{\partial y} \:   =  \: nu \: }} \\

So, by using Euler's theorem, we have

\rm\implies \:\rm \: x\dfrac{\partial f}{\partial x} \: + \:  y\dfrac{\partial f}{\partial y} \:   =  \: nf \\

\rule{190pt}{2pt}

Additional Information :-

If u is a homogeneous function of x and y of degree n, then

\boxed{ \rm{ \:x\dfrac{\partial u}{\partial x} \: + \:  y\dfrac{\partial u}{\partial y} \:   =  \: nu \:  \: }} \\

\boxed{ \rm{ \:x\dfrac{\partial^{2}  u}{\partial  {x}^{2} } \: + \:  y\dfrac{\partial ^{2}  u}{\partial x\partial y} \:   =  \: (n - 1) \frac{\partial u}{\partial x}  \:  \: }} \\

\boxed{ \rm{ \:y\dfrac{\partial^{2}  u}{\partial  {y}^{2} } \: + \:  x\dfrac{\partial ^{2}  u}{\partial x\partial y} \:   =  \: (n - 1) \frac{\partial u}{\partial y}  \:  \: }} \\

\boxed{ \rm{ \: {x}^{2} \dfrac{\partial^{2}  u}{\partial  {x}^{2} } \: + \:  2xy\dfrac{\partial ^{2}  u}{\partial x\partial y} \:  +  \:  {y}^{2} \frac{ {\partial }^{2} u}{\partial  {y}^{2} }    =  \:n (n - 1)u  \:  \: }} \\

Similar questions