Math, asked by sajan6491, 1 day ago

 \rm If  \: u=log(x^3 +  {y}^{3}  +  {z}^{3}  - 3xyz) \\  \rm then \: show \: that  :  - \\  \rm \bigg( \frac{ \partial}{ \partial x}  + \frac{ \partial}{ \partial y}  + \frac{ \partial}{ \partial z} \bigg) ^2u =  \frac{ - 9}{(x + y + z) {}^{2} }

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\rm \: u=log(x^3 + {y}^{3} + {z}^{3} - 3xyz) \\

On differentiating partially w. r. t., we get

\rm \: \dfrac{\partial }{\partial x}u=\dfrac{\partial }{\partial x}log(x^3 + {y}^{3} + {z}^{3} - 3xyz)  \\

\rm \: \dfrac{\partial u}{\partial x}=\dfrac{1}{x^3 + {y}^{3} + {z}^{3} - 3xyz} \dfrac{\partial }{\partial x}(x^3 + {y}^{3} + {z}^{3} - 3xyz)  \\

\rm\implies \:\rm \: \dfrac{\partial u}{\partial x}=\dfrac{ {3x}^{2}  - 3yz}{x^3 + {y}^{3} + {z}^{3} - 3xyz} -   - - (1)  \\

Again,

\rm \: u=log(x^3 + {y}^{3} + {z}^{3} - 3xyz) \\

On differentiating partially w. r. t. y, we get

\rm \: \dfrac{\partial }{\partial y}u=\dfrac{\partial }{\partial y}log(x^3 + {y}^{3} + {z}^{3} - 3xyz) \\

\rm \: \dfrac{\partial u}{\partial y}=\dfrac{1}{x^3 + {y}^{3} + {z}^{3} - 3xyz} \dfrac{\partial }{\partial y}(x^3 + {y}^{3} + {z}^{3} - 3xyz)  \\

\rm\implies \:\rm \: \dfrac{\partial u}{\partial y}=\dfrac{ {3y}^{2}  - 3xz}{x^3 + {y}^{3} + {z}^{3} - 3xyz}  -  -  - (2) \\

Again,

\rm \: u=log(x^3 + {y}^{3} + {z}^{3} - 3xyz) \\

On differentiating partially w. r. t. z, we get

\rm \: \dfrac{\partial u}{\partial z}=\dfrac{1}{x^3 + {y}^{3} + {z}^{3} - 3xyz} \dfrac{\partial }{\partial z}(x^3 + {y}^{3} + {z}^{3} - 3xyz)  \\

\rm\implies \:\rm \: \dfrac{\partial u}{\partial z}=\dfrac{ {3z}^{2}  - 3xy}{x^3 + {y}^{3} + {z}^{3} - 3xyz}  -  -  - (3) \\

On adding equation (1), (2) and (3), we get

\rm \: \dfrac{\partial u}{\partial x} + \dfrac{\partial u}{\partial y} + \dfrac{\partial u}{\partial z} \\

\rm \:  =  \: \dfrac{ {3x}^{2} - 3yz +  {3y}^{2} - 3xz +  {3z}^{2}  - 3xy}{x^3 + {y}^{3} + {z}^{3} - 3xyz}  \\

\rm \:  =  \: \dfrac{3( {x}^{2} +  {y}^{2} +  {z}^{2}- xy - yz - zx)}{(x + y + z)(x^2 + {y}^{2} + {z}^{2} - xy - yz - zx)}  \\

\rm \:  =  \: \dfrac{3}{x + y + z}  \\

\rm\implies \:\bf\: \dfrac{\partial u}{\partial x} + \dfrac{\partial u}{\partial y} + \dfrac{\partial u}{\partial z} =  \frac{3}{x + y + z} -  -  - (4)  \\

Now, Consider

\rm \bigg( \dfrac{ \partial}{ \partial x} + \dfrac{ \partial}{ \partial y} + \dfrac{ \partial}{ \partial z} \bigg) ^2u  \\

can be rewritten as

\rm \:  =  \: \bigg(\dfrac{\partial }{\partial x} + \dfrac{\partial }{\partial y} + \dfrac{\partial }{\partial z}\bigg)\bigg(\dfrac{\partial }{\partial x} + \dfrac{\partial }{\partial y} + \dfrac{\partial }{\partial z}\bigg)u \\

\rm \:  =  \: \bigg(\dfrac{\partial }{\partial x} + \dfrac{\partial }{\partial y} + \dfrac{\partial }{\partial z}\bigg)\bigg(\dfrac{\partial u}{\partial x} + \dfrac{\partial u}{\partial y} + \dfrac{\partial u}{\partial z}\bigg) \\

\rm \:  =  \: \bigg(\dfrac{\partial }{\partial x} + \dfrac{\partial }{\partial y} + \dfrac{\partial }{\partial z}\bigg)\dfrac{3}{x + y + z}  \\

\rm \:  =  \: \dfrac{\partial }{\partial x} \dfrac{3}{x + y + z} + \dfrac{\partial }{\partial y} \dfrac{3}{x + y + z} + \dfrac{\partial }{\partial z} \dfrac{3}{x + y + z}  \\

\rm \:  =  \: \dfrac{ - 3}{(x + y + z)^{2} } + \dfrac{ - 3}{(x + y + z)^{2} } - \dfrac{ - 3}{(x + y + z)^{2} } \\

\rm \:  =  \: \dfrac{ - 9}{(x + y + z)^{2} }\\

Hence,

\rm\implies \boxed{ \bf{ \:\bigg( \frac{ \partial}{ \partial x} + \frac{ \partial}{ \partial y} + \frac{ \partial}{ \partial z} \bigg) ^2u = \frac{ - 9}{(x + y + z) {}^{2} } \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\dfrac{\partial }{\partial x}logx =  \frac{1}{x} \: }} \\

\boxed{ \rm{ \:\dfrac{\partial }{\partial x} {x}^{n}  =   {nx}^{n - 1}  \: }} \\

\boxed{ \rm{ \:\dfrac{\partial }{\partial x} k  =   0\: }} \\

\boxed{ \rm{ \:\dfrac{\partial }{\partial x}  \frac{1}{ {x}^{n} }   =    \frac{ - n}{ {x}^{n + 1} } \: }} \\

Similar questions