Math, asked by sajan6491, 17 days ago

 \rm If \:  u = lx + my , v= mx - ly \:  then  \\ \rm show  \: that \:   \bigg(    \frac{\partial u}{\partial x} \bigg  )  \bigg(  \frac{\partial x}{\partial u} \bigg)=  \frac{ {l}^{2} }{ {l}^{2} } +m^2

Answers

Answered by mathdude500
8

Appropriate Question :-

 If \: u = lx + my , v= mx - ly \: then \\ show \: that \: \bigg( \frac{\partial u}{\partial x} \bigg ) \bigg( \frac{\partial x}{\partial u} \bigg)= \frac{ {l}^{2} }{ {l}^{2} + {m}^{2}}

\large\underline{\sf{Solution-}}

Given that,

 \: u = lx + my -  -  - (1) \\

On differentiating both sides partially w. r. t. x, we get

\implies \:\dfrac{\partial u}{\partial x} = l -  -  - (i) \\

Now, further given that

v = mx - ly -  -  - (2) \\

On multiply equation (1) by l and (2) by m, we get

vm =  {m}^{2} x - lmy -  -  - (3) \\

and

 \: ul =  {l}^{2} x + mly -  -  - (4) \\

On adding equation (3) and (4), we get

 {l}^{2}x +  {m}^{2}x= lu + mv \\

 ({l}^{2} +  {m}^{2})x= lu + mv \\

On differentiating both sides partially w. r. t. u, we get

 ({l}^{2} +  {m}^{2})\frac{\partial }{\partial u}x=\frac{\partial }{\partial u} (lu + mv) \\

 ({l}^{2} +  {m}^{2})\frac{\partial x}{\partial u}=l \\

\implies \:\frac{\partial x}{\partial u}=\dfrac{l}{{l}^{2} +  {m}^{2}} -  -  - (5)  \\

Now, Consider

\rm \: \dfrac{\partial u}{\partial x} \times \dfrac{\partial x}{\partial u} \\

On substituting the values from equation (i) and (5), we get

 = l \times \dfrac{l}{{l}^{2} +  {m}^{2}}  \\

 = \dfrac{ {l}^{2} }{{l}^{2} +  {m}^{2}}  \\

Hence,

\implies \:\boxed{{  \: \:\bigg(\frac{\partial u}{\partial x}\bigg) \bigg(\frac{\partial x}{\partial u}\bigg)= \dfrac{ {l}^{2} }{{l}^{2} +  {m}^{2}}  \:  \:  \: }} \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions