Math, asked by sajan6491, 1 day ago

 \rm If  \: u  =  \sqrt{ {x}^{2}  +  {y}^{2}  +  {z}^{2} } ,prove \: that \\  \rm \frac{ { \partial}^{2}u }{ \partial {x}^{2} }  + \frac{ { \partial}^{2}u }{ \partial y^{2} }  + \frac{ { \partial}^{2}u }{ \partial z^{2} }   =  \frac{2}{u}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm \: u =  \sqrt{ {x}^{2}  +  {y}^{2}  +  {z}^{2} }  \\

On squaring both sides, we get

\rm \:  {u}^{2}  =  {x}^{2} +  {y}^{2} +  {z}^{2}

On differentiating partially w. r. t. x, we get

\rm \:  \dfrac{\partial }{\partial x}{u}^{2}  =  \dfrac{\partial }{\partial x}({x}^{2} +  {y}^{2} +  {z}^{2} ) \\

\rm \: 2u\dfrac{\partial u}{\partial x} = 2x + 0 + 0 \\

\rm\implies \:\dfrac{\partial u}{\partial x} = \dfrac{x}{u} -  -  - (1) \\

On differentiating partially w. r. t. x, we get

\rm \: \dfrac{\partial }{\partial x}\bigg(\dfrac{\partial u}{\partial x}\bigg) = \dfrac{\partial }{\partial x}\bigg( \dfrac{x}{u}\bigg) \\

\rm \: \dfrac{\partial^{2}u}{\partial  {x}^{2} } = \dfrac{u\dfrac{\partial }{\partial x}x - x\dfrac{\partial }{\partial x}u}{ {u}^{2} }  \\

\rm \: \dfrac{\partial^{2}u}{\partial  {x}^{2} } = \dfrac{u \times 1 - x\dfrac{\partial u}{\partial x}}{ {u}^{2} }  \\

\rm \: \dfrac{\partial^{2}u}{\partial  {x}^{2} } = \dfrac{u - x \times \dfrac{x}{u} }{ {u}^{2} }  \\

\rm \: \dfrac{\partial^{2}u}{\partial  {x}^{2} } = \dfrac{ \dfrac{ {u}^{2} -  {x}^{2} }{u} }{ {u}^{2} }  \\

\rm\implies \:\rm \: \dfrac{\partial^{2}u}{\partial  {x}^{2}} =\dfrac{ {u}^{2}  -  {x}^{2} }{ {u}^{3} }  -  -  - (1) \\

Similarly,

\rm\implies \:\rm \: \dfrac{\partial^{2}u}{\partial  {y}^{2}} =\dfrac{ {u}^{2}  -  {y}^{2} }{ {u}^{3} }  -  -  - (2) \\

Similarly,

\rm\implies \:\rm \: \dfrac{\partial^{2}u}{\partial  {z}^{2}} =\dfrac{ {u}^{2}  -  {z}^{2} }{ {u}^{3} }  -  -  - (3) \\

On adding equation (1), (2) and (3), we get

\rm \: \dfrac{\partial^{2}u}{\partial  {x}^{2}}  + \dfrac{\partial^{2}u}{\partial  {y}^{2}}  + \dfrac{\partial^{2}u}{\partial  {z}^{2}}  \\

\rm \:  =  \: \dfrac{ {u}^{2}  -  {x}^{2} }{ {u}^{3} }  + \dfrac{ {u}^{2}  -  {y}^{2} }{ {u}^{3} }  + \dfrac{ {u}^{2}  -  {z}^{2} }{ {u}^{3} }  \\

\rm \:  =  \: \dfrac{ {u}^{2}  -  {x}^{2}  +  {u}^{2} -  {y}^{2}  +  {u}^{2}  -  {z}^{2} }{ {u}^{3} }  \\

\rm \:  =  \: \dfrac{3{u}^{2}  -  ({x}^{2}  +  {y}^{2}+  {z}^{2} )}{ {u}^{3} }  \\

\rm \:  =  \: \dfrac{3{u}^{2}  -  {u}^{2} }{ {u}^{3} }  \\

\rm \:  =  \: \dfrac{2{u}^{2}}{ {u}^{3} }  \\

\rm \:  =  \: \dfrac{2}{u}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\frac{ { \partial}^{2}u }{ \partial {x}^{2} } + \frac{ { \partial}^{2}u }{ \partial y^{2} } + \frac{ { \partial}^{2}u }{ \partial z^{2} } = \frac{2}{u} \: }} \\

Similar questions