Math, asked by sajan6491, 1 day ago

 \rm If  \: y =  {x}^3 +  \frac{1}{ {x}^{3}}   ,prove \: that \\   \rm{x}^{2} \frac{ {d}^{2} y}{d {x }^{2} }   + x \frac{dy}{dx}  = 9y

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm \: y = {x}^3 + \dfrac{1}{ {x}^{3}} \\

can be rewritten as

\rm \: y =  {x}^{3} +  {x}^{ - 3} \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}y  = \dfrac{d}{dx}( {x}^{3} +  {x}^{ - 3}) \\

\rm \: \dfrac{dy}{dx} =  {3x}^{3 - 1} -  {3x}^{ - 3 - 1}  \\

 \red{\rm\implies \:\dfrac{dy}{dx} =  {3x}^{2} -  {3x}^{ - 4}} -  -  - (1)  \\

Now, Again on differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}\bigg(\dfrac{dy}{dx}\bigg) = \dfrac{d}{dx}( {3x}^{2} -  {3x}^{ - 4}) \\

\rm \: \dfrac{d^{2}y }{d {x}^{2} } =  {6x}^{2 - 1} - 3( - 4) {x}^{ - 4 - 1}  \\

 \red{\rm\implies \:\rm \: \dfrac{d^{2}y }{d {x}^{2} } =6x + 12 {x}^{ - 5}}  -  -  - (2) \\

Now, Consider

 \: \rm \:  \: {x}^{2} \dfrac{ {d}^{2} y}{d {x }^{2} } + x \dfrac{dy}{dx} \\

On substituting the values from equation (1) and (2), we get

\rm \:  =  \:  {x}^{2}(6x + 12 {x}^{ - 5}) + x( {3x}^{2} -  {3x}^{ - 4}) \\

\rm \:  =  \:   {6x}^{3}  + 12 {x}^{ - 3} + {3x}^{3} -  {3x}^{ - 3} \\

\rm \:  =  \:   {9x}^{3}  +9{x}^{ - 3} \\

\rm \:  =  \: 9( {x}^{3} +  {x}^{ - 3}) \\

\rm \:  =  \:9 \bigg({x}^3 + \dfrac{1}{ {x}^{3}}\bigg) \\

\rm \:  =  \: 9y \\

Hence,

\rm\implies \:\boxed{ \bf{  \: {x}^{2} \dfrac{ {d}^{2} y}{d {x }^{2} } + x \dfrac{dy}{dx} = 9y \:  \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \:  \: }} \\

\boxed{ \rm{ \: {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions