Math, asked by BrainlyElon, 13 hours ago

 \rm \Large{Hello all !}

 \boxed{\red{\rm \int \dfrac{x^9}{(4x^2+1)^6}\ dx}}

Solve the above integral , Thank you !

Answers

Answered by TharunEEE
31

\displaystyle \sf  \red{ \int \dfrac{x^9}{(4x^2+1)^6}\ dx}

Taking common in the denominator ,

\longrightarrow \displaystyle \sf \int \dfrac{x^9}{\left[ x^2\left( 4+ \frac{1}{x^2}\right) \right]^6}\ dx

\longrightarrow \displaystyle \sf \int \dfrac{x^9}{x^{12}\left[ \left( 4+ \frac{1}{x^2}\right) \right]^6}\ dx

\longrightarrow \displaystyle \sf \int \dfrac{1}{x^{3}\left[ \left( 4+ \frac{1}{x^2}\right) \right]^6}\ dx

Using Substitution method ,

Let  \sf u=\left( 4+ \dfrac{1}{x^2} \right)

\implies \sf - \dfrac{du}{2} =  \dfrac{1}{x^3}\ dx

\longrightarrow \displaystyle \sf \int \dfrac{1}{u^6} \left( - \dfrac{du}{2} \right)

\longrightarrow \displaystyle \sf - \dfrac{1}{2}\int \dfrac{1}{u^6}\ du

\longrightarrow \displaystyle \sf - \dfrac{1}{2} \left[ \dfrac{u^{-5}}{-5} \right]\ +c

\longrightarrow \displaystyle \sf \dfrac{1}{10u^5}\ +c

\longrightarrow \sf \orange{\dfrac{1}{10\ \left( 4+ \dfrac{1}{x^2} \right)^5}\ +c}\ \; \bigstar

Similar questions