Math, asked by sajan6491, 17 days ago


 \rm{Let  \: f (x) =  \begin{cases}   \rm{x}^{2} , \:  \:   \:   \:  \:  \: \:   \:  \:  \:  \:  \: if < 2 \\ \rm mx + b,   \: \: if \: x > 2\end {cases}} \\  \rm if \: f(x) \: is \: differentiable \: every \: where \: then


 \rm (i) \: m = 4  \: and \: b =  - 4 \\  \rm{ (ii) \: m = 4 \: and \: b = 4} \\  \rm (iii) \: m =  - 4 \: and \: b =  - 4 \\  \rm (iv) \: m  =  - 4 \:and \: b = 4

Answers

Answered by mathdude500
14

Appropriate Question :-

\rm{Let \: f (x) = \begin{cases} \rm{x}^{2} , \: \: \: \: \: \: \: \: \: \: \: \: if  \: x \:   <   2 \\ \rm mx + b, \: \: if \: x  \geqslant  2\end {cases}} \\ \rm if \: f(x) \: is \: differentiable \: every \: where \: then

 \rm (i) \: m = 4 \: and \: b = - 4 \\ \rm{(ii) \: m = 4 \: and \: b = 4} \\ \rm (iii) \: m = - 4 \: and \: b = - 4 \\ \rm (iv) \: m = - 4 \:and \: b = 4

\large\underline{\sf{Solution-}}

Given function is

\rm \: f (x) = \begin{cases} \rm{x}^{2} , \: \: \: \: \: \: \: \: \: \: \: \: if  \: x   <   2 \\  \\ \rm mx + b, \: \: if \: x  \geqslant  2\end {cases} \\

As it is given that f(x) is differentiable at x = 2.

We know, every differentiable function is always continuous.

So, f(x) is continuous at x = 2.

So, it means

\rm \: \displaystyle\lim_{x \to 2^+}f(x) = \displaystyle\lim_{x \to 2^ - }f(x) \\

\rm \: \displaystyle\lim_{x \to 2^+} \: mx + b = \displaystyle\lim_{x \to 2^ - } \:  {x}^{2}  \\

can be rewritten as

\rm \: \displaystyle\lim_{h \to 0} \: m(2 + h) + b = \displaystyle\lim_{h \to 0 } \:   {(2 - h)}^{2}   \\

\rm \: 2m + b = 4  -  -  - (1)\\

Now, Differentiability at x = 2

\rm \: \displaystyle\lim_{x \to 2^+}\rm \:  \frac{f(x) - f(2)}{x - 2}  = \displaystyle\lim_{x \to 2^ - }\rm \:  \frac{f(x) - f(2)}{x - 2}  \\

\rm \: \displaystyle\lim_{x \to 2^+}\rm \:  \frac{mx + b - (2m + b)}{x - 2}  = \displaystyle\lim_{x \to 2^ - }\rm \:  \frac{ {x}^{2}  - (2m + b)}{x - 2}  \\

\rm \: \displaystyle\lim_{x \to 2^+}\rm \:  \frac{mx - 2m}{x - 2}  = \displaystyle\lim_{x \to 2^ - }\rm \:  \frac{ {x}^{2}  - 4}{x - 2}  \\

\rm \: \displaystyle\lim_{x \to 2^+}\rm \:  \frac{m(x - 2)}{x - 2}  = \displaystyle\lim_{x \to 2^ - }\rm \:  \frac{(x - 2)(x + 2)}{x - 2}  \\

\rm \: \displaystyle\lim_{x \to 2^+}\rm \: m \:  =  \: \displaystyle\lim_{x \to 2^ - }\rm \: (x + 2) \\

\rm\implies \:m \:  =  \: 4 \\

On substituting m = 4, in equation (1), we get

\rm \: 8 + b = 4 \\

\rm \: b = 4 - 8 \\

\rm\implies \:b \:  =  \:  -  \: 4 \\

So, option (a) is correct.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions