Math, asked by sanju2363, 2 months ago


 \rm \lim_{x \to \sqrt{10} } \:  \frac{ \sqrt{7 - 2x}  - ( \sqrt{5} -  \sqrt{2}  )}{ {x}^{2}   - 10} \\


Evaluate !!​

Answers

Answered by BrainlyTornado
10

ANSWER:

\displaystyle \sf  \lim_{x \to  \sqrt{10}} \dfrac{ \sqrt{7-2x} - ( \sqrt{5}- \sqrt{2})}{{x}^{2} -10}= \dfrac{ - (\sqrt{5}  +   \sqrt{2})}{6\sqrt{10}}

\\ \\

TO FIND:

\displaystyle \sf  \lim_{x \to  \sqrt{10}} \dfrac{ \sqrt{7-2x} - ( \sqrt{5}- \sqrt{2})}{{x}^{2} -10}

\\ \\

EXPLANATION:

\implies \displaystyle \sf  \lim_{x \to  \sqrt{10}} \dfrac{ \sqrt{7-2x} - ( \sqrt{5}- \sqrt{2})}{{x}^{2} -10} \\  \\  \\ \implies\sf \dfrac{ \sqrt{7-2 \sqrt{10} } - ( \sqrt{5}-\sqrt{2})}{{ (\sqrt{10}) }^{2}-10} \\  \\  \\ \implies\sf \dfrac{ \sqrt{ 5 + 2-2 \sqrt{5}  \sqrt{2} } - ( \sqrt{5}- \sqrt{2})}{10 -10} \\  \\  \\ \implies\sf \dfrac{ \sqrt{ (\sqrt{5} -  \sqrt{2}  {)}^{2}  } - ( \sqrt{5}   -  \sqrt{2} ) }{10-10} \\  \\  \\

\implies\sf \dfrac{(\sqrt{5} -  \sqrt{2} )- ( \sqrt{5}   -  \sqrt{2} ) }{10 -10} \\  \\  \\   \implies\sf \dfrac{0}{0}  =  \infty \\  \\  \\ \implies \sf Apply \ L'\ Hospital's \ rule \\  \\  \\ \implies \displaystyle \sf  \lim_{x \to  \sqrt{10}} \dfrac{ \dfrac{d}{dx} \left(\sqrt{7-2x} - ( \sqrt{5}- \sqrt{2}) \right)}{ \dfrac{d}{dx}( {x}^{2}-10)} \\  \\  \\  \implies\bigstar\ \boxed{ \bold{ \large{ \blue{ \dfrac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }}}} \\  \\  \\

\implies \displaystyle \sf  \lim_{x \to  \sqrt{10}} \dfrac{ \dfrac{1}{ 2\sqrt{7 - 2x} }  \dfrac{d}{dx} \left(7-2x \right) - (0 - 0)}{ 2x  - 0} \\  \\  \\ \implies \displaystyle \sf  \lim_{x \to  \sqrt{10}} \dfrac{ \dfrac{ - 2}{ 2\sqrt{7 - 2x} } }{ 2x} \\  \\  \\ \implies \displaystyle \sf  \lim_{x \to  \sqrt{10}} \ \dfrac{ - 2}{4x \sqrt{7 - 2x} }  \\  \\  \\

\implies \displaystyle \sf  \lim_{x \to  \sqrt{10}} \ \dfrac{ - 1}{2x \sqrt{7 - 2x} }  \\  \\  \\  \implies\sf  \dfrac{ - 1}{2 \sqrt{10}  \sqrt{7 - 2 \sqrt{10} } } \\  \\  \\ \implies\sf  \dfrac{ - 1}{2 \sqrt{10}  \sqrt{5 + 2-2 \sqrt{5}  \sqrt{2}} } \\  \\  \\ \implies\sf  \dfrac{ - 1}{2 \sqrt{10}  \sqrt{(  \sqrt{5} -  \sqrt{2} {)}^{2} }} \\  \\  \\

\implies\sf  \dfrac{ - 1}{2 \sqrt{10}( \sqrt{5} -  \sqrt{2} )}\\  \\  \\ \implies\sf  \dfrac{ - 1}{2 \sqrt{10}( \sqrt{5} -  \sqrt{2} )}  \times \dfrac{\sqrt{5}  +  \sqrt{2} }{\sqrt{5}  +   \sqrt{2} } \\  \\  \\ \implies\sf  \dfrac{ - (\sqrt{5}  +   \sqrt{2})}{2 \sqrt{10}( (\sqrt{5}  {)}^{2} -  (\sqrt{2}  {)}^{2} )} \\  \\  \\

\implies\sf  \dfrac{ - (\sqrt{5}  +   \sqrt{2})}{2 \sqrt{10}(5 - 2)} \\  \\  \\ \implies\sf  \dfrac{ - (\sqrt{5}  +   \sqrt{2})}{6\sqrt{10}} \\ \\ \\ \implies \displaystyle \sf  \lim_{x \to  \sqrt{10}} \dfrac{ \sqrt{7-2x} - ( \sqrt{5}- \sqrt{2})}{{x}^{2} -10}=\dfrac{ - (\sqrt{5}  +   \sqrt{2})}{6\sqrt{10}}\\ \\ \\

L' Hospital's rule:

  • When ever the value of intermediate comes as 0/0 or ∞/∞, we use L' Hospital's rule.

\\

  • L' Hospital's rule is simply differentiating both numerator and denominator separately.

NOTE : Refer for another method in attachment.

Attachments:
Similar questions