Math, asked by shubham68271233, 8 hours ago

\rm\:Prove\:that\:tanx=1\:or\:\dfrac{1}{2}\:if\:1+sin^2x=3 sinx cosx}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm \: 1 +  {sin}^{2}x \:  =  \: 3 \: sinx \: cosx \\

Divide both sides by \rm \: cos^2x , we get

\rm \: \dfrac{1}{ {cos}^{2} x}  + \dfrac{ {sin}^{2}x }{ {cos}^{2}x }  = \dfrac{3sinxcosx}{ {cos}^{2} x}  \\

\rm \:  {sec}^{2}x \: +  \:  {tan}^{2}x = 3tanx \\

\rm \:  1 +  {tan}^{2}x \: +  \:  {tan}^{2}x = 3tanx \\

\rm \:  2{tan}^{2}x  + 1= 3tanx \\

\rm \:  2{tan}^{2}x  - 3tanx + 1= 0 \\

\rm \:  2{tan}^{2}x  - 2tanx - tanx + 1= 0 \\

\rm \: 2tanx(tanx - 1) - 1(tanx - 1) = 0 \\

\rm \: (tanx - 1)(2tanx - 1) = 0 \\

\rm \: tanx - 1= 0 \:  \:  \: or \:  \:  \: 2tanx - 1 = 0 \\

\bf\implies \:tanx = 1 \:  \: or \:  \: tanx = \dfrac{1}{2}  \\

\rule{190pt}{2pt}

Formulae Used :-

\rm \: tanx =  \dfrac{sinx}{cosx} \\

\rm \: secx =  \dfrac{1}{cosx} \\

\rm \:  {sec}^{2}x = 1 +  {tan}^{2}x \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \\  \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions