If cosec θ-sin θ=l and sec θ- cos θ=m, prove that
Answers
✰ Some important ratios & identities ✰
Reciprocal Identities :
➺ Sinθ = 1/Cosecθ
➺ Cosθ = 1/Secθ
➺ Tanθ = 1/Cotθ
Qoutient Identities :
➺ Sinθ/Cosθ = Tanθ
➺ Cosθ/Sinθ = Cotθ
Pythagorean Identities :
➺ Cos²θ + Sin²θ = 1
➺ Tan²θ + 1 = Sec²θ
➺ 1 + Cot²θ = Cosec²θ
Cofunction Identities :
➺ Sinθ = Cos (90° – θ)
➺ Tanθ = Cot (90° – θ)
➺ Secθ = Cosec (90° – θ)
Opposite angle Identities :
➺ Sin (–A) = – SinA
➺ Cos (–A) = CosA
➺ Tan (–A) = – TanA
Sum and difference Identities :
➺ Sin (α ± β) = SinαCosβ ± CosαSinβ
➺ Cos (α ± β) = CosαCosβ ± SinαSinβ
➺ Tan (α ± β) = Tanα ± Tanβ/1 ± TanαTanβ
Double angle Identities :
➺ Sin 2θ = 2 SinθCosθ
➺ Cos 2θ = Cos²θ – Sin²θ
➺ Cos 2θ = 2 Cos²θ – 1
➺ Cos 2θ = 1 – 2 Sin²θ
➺ Tan 2θ = 2 Tanθ/1 – Tan²θ
Product sum Identities :
➺ SinαCosβ = ½ Sin (α + β) + Sin (α – β)
➺ CosαSinβ = ½ Sin (α + β) – Sin (α – β)
➺ SinαSinβ = ½ Cos (α – β) – Cos(α + β)
➺ CosαCosβ = ½ Cos (α + β) + Cos (α–β)