Answers
Answer:
Given Question :-
Find the cube root of 0.729
Given expression is
can be rewritten as
Now, we use prime factorization method to find the cube root.
So, Consider
Now, Consider
So,
Hence,
________________________
Note : scroll right to view the full solution
Answer:
Given Question :-
Find the cube root of 0.729
\green{\large\underline{\sf{Solution-}}}
Solution−
Given expression is
\rm :\longmapsto\: \sqrt[3]{0.729}:⟼
3
0.729
can be rewritten as
\rm \: = \: \sqrt[3]{\dfrac{729}{1000} } =
3
1000
729
Now, we use prime factorization method to find the cube root.
So, Consider
\purple{\rm :\longmapsto\:Prime \: Factorization \: of \: 729}:⟼PrimeFactorizationof729
\begin{gathered} \purple{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:729 \:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:243 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:81\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:27 \:\:}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}\end{gathered}
3
3
3
3
3
3
729
243
81
27
9
3
1
\purple{\rm\implies \: Prime \: Factorization \: of \: 729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3}⟹PrimeFactorizationof729=3×3×3×3×3×3
Now, Consider
\green{\rm :\longmapsto\:Prime \: Factorization \: of \: 1000}:⟼PrimeFactorizationof1000
\begin{gathered} \green{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:1000 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:500 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:250\:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:125\:\:}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:25 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}\end{gathered}
2
2
2
5
5
5
1000
500
250
125
25
5
1
\green{\rm\implies \:Prime \: Factorization \: of \: 1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5}⟹PrimeFactorizationof1000=2×2×2×5×5×5
So,
\rm \: = \: \sqrt[3]{\dfrac{729}{1000} } =
3
1000
729
\rm \: = \: \sqrt[3]{\dfrac{3 \times 3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 5 \times 5 \times 5} } =
3
2×2×2×5×5×5
3×3×3×3×3×3
\rm \: = \: \sqrt[3]{\dfrac{ \underbrace{3 \times 3 \times 3} \times \underbrace{3 \times 3 \times 3}}{\underbrace{2 \times 2 \times 2} \times \underbrace{5 \times 5 \times 5}} } =
3
2×2×2
×
5×5×5
3×3×3
×
3×3×3
\rm \: = \: \dfrac{3 \times 3}{2 \times 5} =
2×5
3×3
\rm \: = \: \dfrac{9}{10} =
10
9
\rm \: = \: 0.9 = 0.9
Hence,
\rm\implies \:\:\underbrace{\boxed{\tt{ \: \: \: \: \sqrt[3]{0.729} = 0.9 \: \: \: \: }}}⟹
3
0.729
=0.9
________________________
Note : scroll right to view the full solution
please drop some ❤️❤️❤️
Step-by-step explanation:
please f-o-l-l-o-w m-e bro