Math, asked by Anonymous, 5 days ago

  \rm \red{ \frac{1}{ {1}^{2} } + \frac{1}{ {1}^{2} + {2}^{2} } + \frac{1}{ {1}^{2} + {2}^{2} + {3}^{2} } + \frac{1}{ {1}^{2} + {2}^{2} + {3}^{2} + {4}^{2} } + \dots \dots }

Answers

Answered by Anonymous
0

Answer:

 \frac{1}{ {1}^{2} }  +  \frac{1}{ {1}^{2}  +  {2}^{2} }  +  \frac{1}{ {1}^{2} +  {2}^{2} +  {3}^{2}   }  +  \frac{1}{ {1}^{2} +  {2}^{2}   + 3 +  {4}^{2} }  \\  \\ here \: 1st \: number, a \: is  \frac{1}{ {1}^{2} } = 1  \\ common \: ratio \:,  r =  \frac{1}{ {1}^{2} +  {2}^{2}  }  \div  \frac{1}{ {1}^{2} }  \\  =  \frac{1}{5}  \times 1 \\  =  \frac{1}{5}  < 1

So the sum of infinite geometric series is

S \infty  =  \frac{a}{1 - r}  \\  =  \frac{1}{1 -  \frac{1}{5} }  \\  =  \frac{1}{ \frac{4}{5} }  \\  =  \frac{5}{4}

Here is the answer! plz make the brainliest!

Similar questions