Math, asked by Anonymous, 5 months ago

  \rm \red{HELLO \:  \:  TRIGONOMETRY \: \:   HERO \:  !}
Please solve my question :)

If   \frac{sin ^{4}  \: A}{a}  \:  +  \:  \frac{cos^{4}  A}{b} \:  =  \:  \frac{1}{a \:  +  \: b} , then prove that   \frac{sin ^{8}  \: A}{ {a}^{3} }  \:  +  \:  \frac{cos^{8} \: A}{ {b}^{3} } \:  =  \:  \frac{1}{(a \:  +  \: b) ^{3} }

Answers

Answered by BrainlyIAS
72

★═════════(✷‿✷)══════════★

\sf \dfrac{sin^4A}{a}+\dfrac{cos^4A}{b}=\dfrac{1}{a+b}

  • sin²A + cos²A = 1

➠ cos²A = 1 - sin²A

cos⁴A = 1 + sin⁴A - 2sin²A

\\ \to \sf \dfrac{sin^4A}{a}+\dfrac{1+sin^4A-2sin^2A}{b}=\dfrac{1}{a+b}\\

\\\to \sf bsin^4A+a+asin^4A-2asin^2A=\dfrac{ab}{a+b}

\to \sf sin^4A(a+b)-2asin^2A+a=\dfrac{ab}{a+b}\\

\\ \to \sf sin^4A(a+b)^2-2(sin^2A)(a+b)a+a(a+b)=ab\\

\\\to \sf sin^4A(a+b)^2-2[sin^2A(a+b)]a+a^2+ab-ab=0\\

\\\to \sf [sin^2A(a+b)]^2-2[sin^2A(a+b)]a+a^2=0\\

  • (a - b)² = a² - 2ab + b²

\\\to \sf [sin^2A(a+b)-a]^2=0\\

\\\to \blue{\textsf{\textbf{ sin$^\text{2}\text{A}=\dfrac{\text a}{\text{a\ +\ b}} $}}}\\

Now , cos²A = 1 - sin²A

\\\to \sf cos^2A=1-\dfrac{a}{a+b}\\

\\\to \green{\textsf{\textbf{$\text{cos}^\text{2}\text{A}=\dfrac{\text{b}}{\text{a\ +\ b}}$}}}\\

So ,

\\\sf \dfrac{\text{sin}^\text{8}A}{a^3}+\dfrac{cos^8A}{b^3}\\

\\\to \sf \dfrac{(sin^2A)^4}{a^3}+\dfrac{(cos^2A)^4}{b^3}\\

\\\to \sf \dfrac{\big(\frac{a}{a+b}\big)^{\tiny{4}}}{a^3}+\dfrac{\big(\frac{b}{a+b}\big)^{\tiny{4}}}{b^3}\\

\\\to \sf \dfrac{a}{(a+b)^4}+\dfrac{b}{(a+b)^4}\\

\\\to \sf \dfrac{a+b}{(a+b)^4}\\

\\\pink{\to \textsf{\textbf{$ \dfrac{\text 1}{\text{(a\ +\ b)$^\text{3}$}} $}}}\\

★═════════(✷‿✷)═════════★

Answered by vinshultyagi
5

\sf \dfrac{sin^4A}{a}+\dfrac{cos^4A}{b}=\dfrac{1}{a+b}

\begin{gathered}\\ \to \sf \dfrac{sin^4A}{a}+\dfrac{1+sin^4A-2sin^2A}{b}=\dfrac{1}{a+b}\\\end{gathered}

\begin{gathered}\\\to \sf bsin^4A+a+asin^4A-2asin^2A=\dfrac{ab}{a+b}\end{gathered}

\begin{gathered}\to \sf sin^4A(a+b)-2asin^2A+a=\dfrac{ab}{a+b}\\\end{gathered}

\begin{gathered}\\ \to \sf sin^4A(a+b)^2-2(sin^2A)(a+b)a+a(a+b)=ab\\\end{gathered}

\begin{gathered}\\\to \sf sin^4A(a+b)^2-2[sin^2A(a+b)]a+a^2+ab-ab=0\\\end{gathered}

\begin{gathered}\\\to \sf [sin^2A(a+b)]^2-2[sin^2A(a+b)]a+a^2=0\\\end{gathered}

\begin{gathered}\\\to \sf [sin^2A(a+b)-a]^2=0\\\end{gathered}

\begin{gathered}\\\to {\textsf{\textbf{ sin$^\text{2}\text{A}=\dfrac{\text a}{\text{a\ +\ b}} $}}}\\\end{gathered}

Now , cos²A = 1 - sin²A

\begin{gathered}\\\to \sf cos^2A=1-\dfrac{a}{a+b}\\\end{gathered}

\begin{gathered}\\\to {\textsf{\textbf{$\text{cos}^\text{2}\text{A}=\dfrac{\text{b}}{\text{a\ +\ b}}$}}}\\\end{gathered}

\begin{gathered}\\\sf \dfrac{\text{sin}^\text{8}A}{a^3}+\dfrac{cos^8A}{b^3}\\\end{gathered}

\begin{gathered}\\\to \sf \dfrac{(sin^2A)^4}{a^3}+\dfrac{(cos^2A)^4}{b^3}\\\end{gathered}

\begin{gathered}\\\to \sf \dfrac{\big(\frac{a}{a+b}\big)^{\tiny{4}}}{a^3}+\dfrac{\big(\frac{b}{a+b}\big)^{\tiny{4}}}{b^3}\\\end{gathered}

\begin{gathered}\\\to \sf \dfrac{a}{(a+b)^4}+\dfrac{b}{(a+b)^4}\\\end{gathered}

\begin{gathered}\\\to \sf \dfrac{a+b}{(a+b)^4}\\\end{gathered}

\begin{gathered}{\to \textsf{\textbf{$ \dfrac{\text 1}{\text{(a\ +\ b)$^\text{3}$}} $}}}\\\end{gathered}

Similar questions