Math, asked by Anonymous, 20 days ago

 \rm \red{ Prove \: that : -     }\\  \displaystyle\rm \red{ {{{(a + b {)}^n =  \sum_{k = 0}^{n}   \binom{n}{k}   {a}^{n - k} {b}^{k}  }}}}

Answers

Answered by mathdude500
15

Appropriate Question :-

Prove that,

 \displaystyle\rm{ {{{(a + b {)}^n = \sum_{k = 0}^{n} \binom{n}{k} {a}^{n - k} {b}^{k}}}}}  \:  \:  \forall \: n \:  \in \: N\\

\large\underline{\sf{Solution-}}

 \displaystyle\rm{ {{{(a + b {)}^n = \sum_{k = 0}^{n} \binom{n}{k} {a}^{n - k} {b}^{k}}}}} \\

can be rewritten as

 \displaystyle\rm{ {{{(a + b {)}^n =  \binom{n}{0} {a}^{n} {b}^{0}}}}} + \binom{n}{1}{a}^{n - 1} {b}^{1} +  -  -  + \binom{n}{n}{a}^{0} {b}^{n}\\

Now, we use Principal of Mathematical Induction, to prove this result.

Let assume that

\rm \: P(n) :  \displaystyle\rm{ {{{(a + b {)}^n =  \binom{n}{0} {a}^{n} {b}^{0}}}}} + \binom{n}{1}{a}^{n - 1} {b}^{1} +  -  -  + \binom{n}{n}{a}^{0} {b}^{n}\\

Step :- 1 For n = 1

 \displaystyle\rm{ {{{(a + b {)}^1 =  \binom{1}{0} {a}^{1} {b}^{0}}}}} + \binom{1}{1}{a}^{1 - 1} {b}^{1}\\

\rm \: a + b = a + b \\

\rm\implies \:P(n) \: is \: true \: for \: n = 1 \\

Step :- 2 Let assume that P(n) is true for n = r, where r is some natural number.

 \displaystyle\rm{ {{{(a + b {)}^r =  \binom{r}{0} {a}^{r} {b}^{0}}}}} + \binom{r}{1}{a}^{r - 1} {b}^{1} +  -  -  + \binom{r}{r}{a}^{0} {b}^{r}\\

Step :- 3 We have to prove that P(n) is true for n = r + 1

 \displaystyle\rm{ {{{(a + b)^{r + 1} =  \binom{r + 1}{0} {a}^{r + 1} {b}^{0}}}}} + \binom{r + 1}{1}{a}^{r} {b}^{1} +  -  -  + \binom{r + 1}{r + 1}{a}^{0} {b}^{r + 1}\\

Now, Consider

 \displaystyle\rm{ {{{(a + b)^{r + 1}}}}}\\

can be rewritten as

\rm \: =  \:(a + b) {(a + b)}^{r}  \\

\rm \: =  \:(a + b)\bigg( \binom{r}{0} {a}^{r} {b}^{0}+ \binom{r}{1}{a}^{r - 1} {b}^{1} +  -  -  + \binom{r}{r}{a}^{0} {b}^{r} \bigg)   \\

 \displaystyle\rm \: =  \:\binom{r}{0}{a}^{r + 1} {b}^{0} + \binom{r}{1}{a}^{r} {b}^{1} +  -  -  + \binom{r}{r}{a}^{1} {b}^{r} +  \\ \rm \:  \: \:\binom{r}{0}{a}^{r} {b}^{1} + \binom{r}{1}{a}^{r - 1} {b}^{2} +  -  -  + \binom{r}{r}{a}^{0} {b}^{r + 1}  \\

 \displaystyle\rm \: =  \:\binom{r}{0}{a}^{r + 1} {b}^{0} + \bigg[\binom{r}{1} + \binom{r}{0}\bigg]{a}^{r} {b}^{1} +  -  -  + \bigg[\binom{r}{r} + \binom{r}{r - 1}\bigg]{a}^{1} {b}^{r} +  + \binom{r}{r}{a}^{0} {b}^{r + 1}  \\

can also be rewritten as

 \displaystyle\rm \: =  \:\binom{r + 1}{0}{a}^{r + 1} {b}^{0} +  \binom{r + 1}{1}{a}^{r} {b}^{1} +  -  -  + \binom{r + 1}{r}{a}^{1} {b}^{r} +  + \binom{r + 1}{r + 1}{a}^{0} {b}^{r + 1}  \\

\boxed{\sf{  \: \because \: \binom{r}{0} \:  =  \: \binom{r + 1}{0} \:  \: }} \\

\boxed{\sf{  \: \because \: \binom{n}{r}  + \binom{n}{r - 1}\:  =  \: \binom{n + 1}{r} \:  \: }} \\

\boxed{\sf{  \: \because \: \binom{r}{r} \:  =  \: \binom{r + 1}{r + 1} \:  \: }} \\

Hence,

 \displaystyle\rm{ {{{(a + b)^{r + 1} =  \binom{r + 1}{0} {a}^{r + 1} {b}^{0}}}}} + \binom{r + 1}{1}{a}^{r} {b}^{1} +  -  -  + \binom{r + 1}{r + 1}{a}^{0} {b}^{r + 1}\\

\rm\implies \:P(n) \: is \: true \: for \: n = r + 1 \\

Hence, By the process of Principal of Mathematical Induction,

 \displaystyle\rm{ {{{(a + b {)}^n = \sum_{k = 0}^{n} \binom{n}{k} {a}^{n - k} {b}^{k}}}}}  \:  \:  \forall \: n \:  \in \: N\\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{\sf{  \:\rm \: \binom{n}{0} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: \binom{n}{1} \:  =  \: n \:  \: }} \\

Similar questions