the perimete tryr of a triangle is 450m . the ratio of i ints side's are 13:12:5 using herons formula find the area of the triangle
Answers
NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,
Explanation:
\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}= \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}
∘areaoftriangle
(heronsfomula)
=
s(s−a)(s−b)(s−c)
∘
\large\underline\mathfrak{\pink{TO\:FIND,}}
TOFIND,
\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}⇢Areaoftriangleusingheronsformula.
\large\underline\mathfrak{\purple{SOLUTION,}}
SOLUTION,
\therefore \green{let\:the\:constant\:be\:'x'\:m}∴lettheconstantbe
′
x
′
m
\begin{gathered}\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x } \end{gathered}
⇢sidesoftriangleare,
⇢a=13x
b=12x
c=5x
\therefore \orange{finding\:the\:value\:of\:x.}∴findingthevalueofx.
\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}⇢perimeteroftriangle=a+b+c
\dashrightarrow \blue{13x+12x+5x=450}⇢13x+12x+5x=450
\implies \green{30x=450}⟹30x=450
\implies \green{x= \dfrac{450}{30} }⟹x=
30
450
\implies \green{x = \cancel\dfrac{450}{30}}⟹x=
30
450
\implies \green{x=15}⟹x=15
\rm{\boxed{\bf{ \:\: x=15 \:\: }}}
x=15
\begin{gathered}\dashrightarrow \red{x=15}\\ \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m} \end{gathered}
⇢x=15
a=13x=13×15=195m
⇢b=12x=12×15=180m
⇢c=5x=5×15=75m
NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,
\therefore \orange{s= \dfrac{a+b+c}{2}}∴s=
2
a+b+c
\implies \orange{ s= \dfrac{195+180+75}{2}}⟹s=
2
195+180+75
\implies \orange{s= \dfrac{450}{2}}⟹s=
2
450
\implies \orange{s= 225}⟹s=225
\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}= \sqrt{s(s - a)(s - b)(s - c)}}⇢areaoftriangle
(heronsfomula)
=
s(s−a)(s−b)(s−c)
\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}⟹
225(225−195)(225−180)(225−75)
\implies \purple{ \sqrt{225(30)(45)(150)}}⟹
225(30)(45)(150)
\implies \purple{\sqrt{ 225(1350)(150)}}⟹
225(1350)(150)
\implies \purple{15\sqrt{202500}}⟹15
202500
\implies \purple{15 \times 450}⟹15×450
\implies \purple{6750m^2}⟹6750m
2
\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}
∘areaoftriangle=6750m
2
∘