Math, asked by sajan6491, 3 days ago

 \rm(x + y) {}^{n}  =  {x}^{n}  + nx {}^{n - 1} y +  \dots +  {y}^{n}

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\rm{\left(x+y\right)^{n}}

Using binomial expansion,

\rm{\implies\,\left(x+y\right)^{n}={\,}^{n}C_{0}\left(x\right)^{n-0}\left(y\right)^{0}+{\,}^{n}C_{1}\left(x\right)^{n-1}\left(y\right)^{1}+{\,}^{n}C_{2}\left(x\right)^{n-2}\left(y\right)^{2}+\cdots+{\,}^{n}C_{n}\left(x\right)^{n-n}\left(y\right)^{n}}

\rm{\implies\,\left(x+y\right)^{n}={x}^{n}+n\left(x\right)^{n-1}\left(y\right)+\dfrac{n(n-1)}{2}\left(x\right)^{n-2}\left(y\right)^{2}+\cdots+{y}^{n}}

Similar questions