Math, asked by Tmanikanta, 1 year ago


  sec ^{2}( \alpha )  -  \tan( \alpha )  \div  \sec  ^{2}  +  \tan( \alpha )

Answers

Answered by LovelyG
17

Answer:

 \dfrac{  \sec^{2}  ( \alpha )  -  \tan( \alpha ) }{ \sec^{2} ( \alpha ) +  \tan( \alpha )  }

We know that -

  • secθ = 1/cosθ
  • tanθ = sinθ/cosθ

On substituting these value in above -

 \dfrac{  \:  \:  \: \dfrac{1}{ \cos^{2} ( \alpha ) }  -  \dfrac{ \sin( \alpha ) }{ \cos( \alpha ) } \:  \:  \:  \:  }{ \dfrac{1}{ {  \cos^{2}(\alpha ) } }  +  \dfrac{ \sin( \alpha ) }{ \cos( \alpha ) } }

On taking LCM,

 \dfrac{  \:  \:  \: \dfrac{ \cos( \alpha )  -  \sin( \alpha ) }{ \cos( \alpha ) }  \:  \:  \:  \:  }{ \dfrac{ \cos( \alpha ) +  \sin( \alpha )  }{ {  \cos(\alpha ) } }  }

On changing division into multiplication.

 \dfrac{ \cos( \alpha ) -  \sin( \alpha )  }{ \cos( \alpha ) }  \times  \dfrac{ \cos( \alpha ) }{ \cos( \alpha )  +  \sin( \alpha ) }

On cancelling cos (α),

 \dfrac{ \cos( \alpha ) -  \sin( \alpha )  }{ \cos( \alpha ) +  \sin( \alpha )  }

Similar questions