Math, asked by Mister360, 3 months ago

\setlength{\unitlength}{1.1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(1,3){6.4}}\put(25,30){\line(1, - 3){6.4}}\put(20,7){\line(3,1){68.5}}\put(20,52.8){\line(3, - 1){68.5}}\put(25,30){\circle*{1}}\put(88,30){\circle*{1.2}}\put(22,30){\sf O}\put(31,6){\sf A}\put(31,52){\sf B}\put(90,28.5){\sf P}\multiput(25,30)(3,0){21}{\line(2,0){1.8}}\qbezier(81.5,32)(78,30)(81,27.5)\qbezier(76,30)(74.5,28)(76,26)\put(33,45){\line(1,3){1.1}}\put(30,45.8){\line(3, - 1){3.2}}\put(30.5,14){\line(3,1){3.2}}\put(33.5,15){\line(1, - 3){1.1}}\put(21,18){\sf 6 cm}\put(73,30.8){\sf 120^\circ$}\put(69,26){\sf 60^\circ$}\end{picture}


\\ \\ \boxed{\begin{array}{c}\sf Prove\:that \\ \tt{ PA= PB} \\ {\boxed{\bf Diagram\: attached}}\end{array}}

Answers

Answered by saanvigrover2007
5

 \bf{Given : } \rm{}

\setlength{\unitlength}{1.1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(1,3){6.4}}\put(25,30){\line(1, - 3){6.4}}\put(20,7){\line(3,1){68.5}}\put(20,52.8){\line(3, - 1){68.5}}\put(25,30){\circle*{1}}\put(88,30){\circle*{1.2}}\put(22,30){\sf O}\put(31,6){\sf A}\put(31,52){\sf B}\put(90,28.5){\sf P}\multiput(25,30)(3,0){21}{\line(2,0){1.8}}\qbezier(81.5,32)(78,30)(81,27.5)\qbezier(76,30)(74.5,28)(76,26)\put(33,45){\line(1,3){1.1}}\put(30,45.8){\line(3, - 1){3.2}}\put(30.5,14){\line(3,1){3.2}}\put(33.5,15){\line(1, - 3){1.1}}\put(21,18){\sf 6 cm}\put(73,30.8){\sf 120^\circ$}\put(69,26){\sf 60^\circ$}\end{picture}

 \bf{To \: Prove : }  \: \rm{PA = PB}

 \bf{Proof :}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf∠BPA = 120⁰

 \sf{Also, ∠OPA = 60⁰.  }\\  \sf{So, ∠BPO = 120⁰ - 60⁰ = 60⁰}

 \textsf{In ΔPOB and ΔPOA,} \\  \\\sf{∠OPA = ∠BPO = 60⁰   \:  \: [Given]} \\ \sf{∠OAP = ∠OBP = 90⁰ \:  \:  [Given]}

 \\  \sf{As, ∠OPA + ∠PAO + ∠AOP =∠OPB + ∠PBO + ∠BOP}

\textsf{[Angle Sum Property of triangle]}

\sf{  \cancel{∠OPA} +  \cancel{∠PAO} + ∠AOP = \cancel{∠OPB} +  \cancel{∠PBO} +  ∠BOP}

 \sf So, ∠BOP = ∠AOP

 \sf Now, in  \: ΔPOB \:  and  \: ΔPOA, \\ \sf \longmapsto∠OPA = ∠BPO = 60⁰   \:  \: [Given] \\  \sf \longmapsto  OP = OP \:  \:  [Common] \\ \sf \longmapsto ∠BOP =∠AOP  \:  \: [Proved \:  above] \\

 \sf  \large \underline\purple{ Hence, ΔPOB \cong ΔPOA } \\  \sf  \large \underline\orange{ by  \: ASA \:  congruency  \: axiom}

  \huge \sf{\pink{\therefore \:  by \:  CPCT, PA = PB }}\green{\checkmark}

Attachments:
Similar questions