Math, asked by Mister360, 2 months ago

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\put(3,3){\vector(-1,-2){3}}\put(3,3){\vector(1,-2){3}}\put(0,-3.5){\sf A(-3,2)}\put(6,-3.5){\sf B(4,-5)}\put(2.8,3.2){\sf P(x,y)}\end{picture}

In the diagram PA=PB

P(x,y)
A(-3,2)
B(4,-5)


Find x and y


Note :-


See the diagram at web

Answer only if you know​

Answers

Answered by kailashmannem
73

----------------------------------------------

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  •  \textsf{PA = PB and A (- 3 , 2), B (4 , - 5)}
  •  \textsf{Find x and y.}

------------------------------------------------

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \textsf{PA \:= \:PB\: ( \:Given\: )}

  •  \textsf{--»\: P \: is \: the \: midpoint \: of \: A \: and \: B.}

  •  \textsf{Midpoint  \:formula\:  =\:}  \large {\frac{x1 \: + \: x2}{2} \: , \: \frac{y1 \: + \: y2}{2}}

  •  \textsf{P \:( \:x, y \:) \:= \:}  \large{\frac{-3 \: + \: 4}{2} \: , \frac{2 \: + \: (-5)}{2}}

  •  \textsf{P \:( \:x, y \:) \:= \:}  \large{\frac{1}{2} \: , \: \frac{-3}{2}}

  •  \textsf{Equating\: to \:the\: coordinates,}

  •  \textsf{x = } \large{ \frac{1}{2}} and  \textsf{y =}  \large{\frac{-3}{2}}

------------------------------------------

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \textsf{x = }  \large{\frac{1}{2}}  \textsf{and y =}  \large{\frac{-3}{2}}

-----------------------------------------------

 \huge{\bf{\purple{\mathfrak{Note:-}}}}

  • Instead of directly using the midpoint formula, you can use section formula and write that m1 : m2 = 1 : 1 and hence substituting m1 and m2, you get the midpoint formula.

  • Both ways you can do and both are correct.

  •  \textsf{Section formula = }

  •  \large{ \frac{m1\: *\: x2\: +\: m2\: * \:x1}{m1 \:+ \:m2} \: , \: \frac{m1\: * \:y2\: + \:m2 \:* \:y1}{m1 \:+\: m2}}

------------------------------------------------

Attachments:
Answered by Anonymous
40

Answer:

Given :-

  • PA = PB.
  • A(- 3 , 2)
  • B(4 , - 5)

To Find :-

  • What is the value of x and y.

Formula Used :-

\bigstar \: \boxed{\sf{Midpoint\: =\: \bigg(\dfrac{x_1 + x_2}{2} , \dfrac{y_1 + y_2}{2}\bigg)}}

Solution :-

Given :

  • x₁ = - 3
  • x₂ = 4
  • y₁ = 2
  • y₂ = - 5

According to the question by using the formula we get,

\sf P(x , y) =\: \bigg(\dfrac{- 3 + 4}{2} , \dfrac{2 + (- 5)}{2}\bigg)

\sf P(x , y) =\: \bigg(\dfrac{1}{2} , \dfrac{2 - 5}{2}\bigg)

\sf P(x , y) =\: \bigg(\dfrac{1}{2} , \dfrac{- 3}{2}\bigg)

\sf\bold{\red{x =\: \dfrac{1}{2} , y =\: \dfrac{- 3}{2}}}

\therefore The value of x is \sf\boxed{\bold{\dfrac{1}{2}}} and the value of y is \sf\boxed{\bold{\dfrac{- 3}{2}}}.

Similar questions