Math, asked by Brâiñlynêha, 5 months ago

\sf \ \alpha \ and \ \beta \ are \ the \ zeroes \ of \ the \ polynomial \ ax^2+bx+c \ , \  \\ \sf \:  find \ a\ polynomial\ whose \ zeroes\ are  \\ \sf \dfrac{1}{a\alpha+b}\ and\ \dfrac{1}{a\beta +b}

Answers

Answered by amansharma264
104

EXPLANATION.

 \sf \implies \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: polynomial \:  = a {x}^{2}  + bx + c \\  \\  \sf \implies \: sum \: of \: zeroes \: of \: the \: quadratic \: equation \: \\ \\   \sf \implies \:  \alpha  +  \beta  =  \frac{ - b}{a}  .........(1)\\  \\  \sf \implies \: products \: of \: zeroes \: of \: quadratic \: equation \\  \\  \sf \implies \:  \alpha  \beta  =  \frac{c}{a} ..........(2)

 \sf \implies  \: to \: find \: value \: of \:  \dfrac{1}{a \alpha  + b}  \:   +  \:  \dfrac{1}{a \beta  + b}

 \sf \implies \:  \dfrac{1}{a \alpha  + b}  \:  +  \:  \dfrac{1}{a \beta  + b}  \\  \\  \sf \implies \:  \frac{a \beta  + b + a \alpha  + b}{(a \alpha  + b)(a \beta  + b)}  \\  \\  \sf \implies \:  \frac{a \alpha  + a \beta  + 2b}{( {a}^{2} \alpha  \beta  + a \alpha b + a \beta b +  {b}^{2} ) }  \\  \\  \sf \implies \:  \frac{a( \alpha  +  \beta ) + 2b}{( {a}^{2} \alpha  \beta  + ab( \alpha  +  \beta ) +  {b}^{2} ) }

 \sf \implies \:  \dfrac{a \times (  \dfrac{ - b}{a} ) + 2b}{( {a}^{2} \times  \dfrac{c}{a}  + ab \times (  \dfrac{ - b}{a}) +  {b}^{2})   }  \\  \\  \sf \implies \:  \frac{ - b + 2b}{(ac + ( - {b}^{2}) +  {b}^{2} ) }  \\  \\  \sf \implies \:  \frac{b}{ac}

\sf \implies \: product \: of \: zeroes \\  \\ \sf \implies \:  \frac{1}{a \alpha  + b}  \:  \times  \:  \frac{1}{a \beta  + b}  \\  \\ \sf \implies \:  \frac{1}{(a \alpha  + b)(a \beta  + b)}  \\  \\ \sf \implies \:  \frac{1}{( {a}^{2} \alpha  \beta  + ab( \alpha  +  \beta ) +  {b}^{2} ) }

\\  \\ \sf \implies \:  \frac{1}{( {a}^{2}  \times ( \dfrac{c}{a} ) + ab( \dfrac{ - b}{a} ) +  {b}^{2}) }  \\  \\ \sf \implies \:  \frac{1}{ac -  {b}^{2}  +  {b}^{2} }  =  \frac{1}{ac}

Hence the required quadratic polynomial is \\  \\  \sf \:  \implies \:  {x}^{2}  -  \frac{b}{ac}x \:  +  \frac{1}{ac}  = 0

Answered by anindyaadhikari13
74

Required Answer:-

Given:

  • α and β are the zeros of the polynomial ax² + bx + c.

To find:

  • The polynomial whose zeros are 1/(aα + b) and 1/(aβ + b)

Solution:

Here,

➡ α + β = -b/a

➡ αβ = c/a

Since, 1/(aα + b) and 1/(aβ + b) are the zeros of the polynomial,

Sum of zeros will be,

 \rm =  \dfrac{1}{a \alpha  + b}  +  \dfrac{1}{a \beta  + b}

 \rm =  \dfrac{a \beta  + b + a \alpha  + b}{(a \alpha  + b)(a \beta  + b)}

 \rm =  \dfrac{a( \alpha  +  \beta ) + 2b}{(a \alpha  + b)(a \beta  + b)}

 \rm =  \dfrac{a( \alpha  +  \beta ) + 2b}{ {a}^{2} \alpha  \beta  + ab \beta  + ab \alpha  +  {b}^{2}}

 \rm =  \dfrac{a( \alpha  +  \beta ) + 2b}{ {a}^{2} \alpha  \beta  + ab ( \alpha  + \beta)+  {b}^{2}}

Substitute the values. We get,

 \rm =  \dfrac{a \bigg( \dfrac{ - b}{a} \bigg) + 2b}{ {a}^{2}  \bigg(  \dfrac{c}{a} \bigg) + ab  \bigg( \dfrac{ - b}{a}  \bigg)+  {b}^{2}}

 \rm =  \dfrac{ - b+ 2b}{ac -  {b}^{2} +  {b}^{2}}

 \rm =  \dfrac{b}{ac }

Now, Product of zeros,

 \rm =  \bigg( \dfrac{1}{a \alpha  + b}  \bigg) \bigg( \dfrac{1}{a \beta  + b}  \bigg)

 \rm =  \bigg( \dfrac{1}{ {a}^{2} \alpha  \beta  + ab( \alpha  +  \beta ) +  {b}^{2} }  \bigg)

 \rm =  \bigg( \dfrac{1}{ {a}^{2} \bigg( \dfrac{c}{a}  \bigg)  + ab \bigg( \dfrac{ - b}{a}  \bigg) +  {b}^{2} }  \bigg)

 \rm =  \bigg( \dfrac{1}{ ac  -  {b}^{2} +  {b}^{2} }  \bigg)

 \rm =  \dfrac{1}{ac}

Hence, the given quadratic polynomial will be,

 \rm {x}^{2} -  \dfrac{b}{ac}x  +  \dfrac{1}{ac}

which is our required answer.


BrainlyIAS: Awesome :-)
Similar questions