Math, asked by XxLUCYxX, 4 days ago


 \sf \: An \: electric \: geyser \: is  \: cylindrical \: in \: shape, \: having \: a \: diameter \: of \: 35 \: cm \: and \: height \: 1.2 \: \\  \sf m. \: Neglecting \: the \: thickness \: of \: its \: walls, \: calculate \: \\  \\ \sf i) \: Its \: outer \: lateral \: surface \: area, \\  \\ \sf ii) \: Its \: capacity \: in \: litres.

Chapter Name :- Mensuration​

Answers

Answered by BrainlyResearcher
40

Question-

An electric geyser is cylindrical in shape, having a diameter of 35cm and height 1.2m

Neglecting the thickness of its walls, calculate

(i) Its outer lateral surface area,

(ii) Its capacity in litres

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Required Answer-

  • i)Its outer Lateral Surface Area is \sf{13200cm^2}
  • ii)Its Capacity in litres is 1155 litres

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Given-

  • diameter=35m,radius\sf{\frac{35}{2}}=17.5
  • height=1.2m\sf{1.2 \times 100}=120cm

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Formula Using-

{\large{\underline{\underline{\pmb{\frak{L \sf{S}A}}}}}}

{\underline{\boxed{\red{\sf{LSA_{(cylinder)}=2 \pi rh}}}}}

{\large{\underline{\underline{\pmb{\frak{V\sf{olume}}}}}}}

{\underline{\boxed{\red{\sf{Volume_{(cylinder)}=\pi r^2 h}}}}}

Here-

  • LSA=Lateral Surface Area
  • \sf{\pi = \dfrac{22}{7}}
  • r=radius
  • h=height

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

\qquad\qquad\quad{\large{\underline{\underline{\blue{\sf{Solution}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\large{\underline{\pmb{\frak{Calculating\:LSA\:of\:geyser}}}}}

{\large{\pink{\dashrightarrow}{\qquad{\sf{LSA_{(cylinder)}=2 \pi rh}}}}}

{\large{\pink{\dashrightarrow}{\qquad{\sf{LSA_{(cylinder)}=2 \times \dfrac{22}{7} \times 1750 \times 120}}}}}

{\large{\pink{\dashrightarrow}{\qquad{\sf{LSA_{(cylinder)}=2 \times 22 \times 2.5\times 120}}}}}

{\large{\pink{\dashrightarrow}{\qquad{\sf{LSA_{(cylinder)}=2 \times 22 \times 2.5\times 120}}}}}

{\large{\blue{\rightsquigarrow}{\qquad{\underline{\sf{LSA_{(cylinder)}=\purple{13200cm^2}}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\large{\underline{\pmb{\frak{Calculating\:Capacity}}}}}

{\large{\purple{\dashrightarrow}{\qquad{\sf{Volume_{(cylinder)}=\pi r^2 h}}}}}

{\large{\purple{\dashrightarrow}{\qquad{\sf{Volume_{(cylinder)}=\dfrac{22}{7} 17.5\times 17.5\times 120}}}}}

{\large{\purple{\dashrightarrow}{\qquad{\sf{Volume_{(cylinder)}=22 \times 2.5\times 17.5\times 120}}}}}

{\large{\blue{\rightsquigarrow}{\qquad{\underline{\sf{Volume_{(cylinder)}\purple{115500cm^2}}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\large{\underline{\sf{Calculating\:Capacity}}}}

  • We know that \sf{1 litres=100cm^2}

{\large{\green{\dashrightarrow}{\therefore{\qquad{\sf {\dfrac{115500}{100}}}}}}}

{\large{\green{\rightsquigarrow}{\therefore{\qquad{\sf {\cancel\dfrac{1155}{100}=\red{1155 litres}}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

~Therefore

  • i)Its outer Lateral Surface Area is \sf{13200cm^2}
  • ii)Its Capacity in litres is 1155 litres

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Similar questions