Math, asked by llSᴡᴇᴇᴛHᴏɴᴇʏll, 1 month ago


\sf{@BrainlyNavodayan786 \: Help \: me \: please!}

Attachments:

Answers

Answered by ⱮøøɳƇⲅυѕɦεⲅ
48

A)

Given :

In ∆ ABC , DE parallel to BC

  • AD = 3 cm
  • DB = 2 cm
  • EC = 4 cm

What To Find :

Length of AC

Solution :

According to Basic proportionality theorem.

 \large\begin{gathered} {\underline{\boxed{ \rm {\red{ \frac{AD }{DB}  \:  =  \: \frac{AE }{EC} }}}}}\end{gathered}

Substuting the values

 \begin{cases}{\large\bf{{\purple{ \longrightarrow}}}} \rm \: \frac{3 }{2}  \:  =  \: \frac{AE }{4} \\  \\ {\large\bf{{\purple{ \longrightarrow}}}} \rm \: AE \:  =  \:  \frac{4 \:  \times  \: 3}{2}  \\  \\{\large\bf{{\purple{ \longrightarrow}}}} \rm \: AE \:  =  \:  \cancel\frac{12}{2}  \\  \\ {\large\bf{{\purple{ \longrightarrow}}}} \rm \: AE \:  =  \: 6 \: cm \end{cases}

AC = AE + EC

  • AE = 6 CM
  • EC = 4 CM

Now , adding the values

AC = 6 cm + 4 cm

AC = 10 cm

\large\mid \ {\bf  \underline{{{\color{orange}{AC = 10 \:  cm}}}}} \mid

Answered by SaYwHyDudE
5

A)

Given :

In ∆ ABC , DE parallel to BC

AD = 3 cm

DB = 2 cm

EC = 4 cm

What To Find :

Length of AC

Solution :

According to Basic proportionality theorem.

Substuting the values

AC = AE + EC

AE = 6 CM

EC = 4 CM

Now , adding the values

AC = 6 cm + 4 cm

AC = 10 cm

Answer:

Step-by-step explanation:

Similar questions