Physics, asked by Aloooo, 1 month ago

\sf{{\Bigg  ( \dfrac{3 {x}^{2}y }{9x {y}^{4} }} \Bigg) }^{2}

Answers

Answered by Anonymous
22

\qquad\leadsto\quad \sf \pink{{{\Bigg  ( \dfrac{3 {x}^{2}y }{9x {y}^{4} }} \Bigg) }^{2} }

Now, we can also write it as :-

\qquad\leadsto\quad \sf \dfrac{ {(3 {x}^{2}y)}^{2}   }{{(9x {y}^{4}) }^{2}  }\\

By using distributive property :-

\qquad\leadsto\quad \sf\dfrac{  {(3)}^{2}  \times  {( {x}^{2} )}^{2}  \times  {(y)}^{2}  }{ {(9)}^{2}   \times  {(x)}^{2}  \times  {( {y}^{4} )}^{2} }\\

\qquad\leadsto\quad \sf\dfrac{  9\times  {( x )}^{2 \times 2}  \times  {y}^{2}  }{81   \times  {x}^{2}  \times  {(y)}^{4 \times 2} } \\

\qquad ☀️ \sf {  {({a}^{m})}^{n} = {(a)}^{m \times n } }\\

\qquad\leadsto\quad \sf\dfrac{  1  }{9} \times  {x}^{4 - 2} \times {y}^{2 - 8} \\

\qquad ☀️ \sf {  \dfrac{{a}^{m}}{{a}^{n}}= {(a)}^{m-n }}\\

\qquad\leadsto\quad \sf\dfrac{  {x}^{2}   \times  {y}^{ - 6} }{9}  \\

\qquad\leadsto\quad \sf\dfrac{  {x}^{2}    \times 1 }{9 \times  {y}^{6}  } \\

\qquad ☀️ \sf {  {a}^{-m} = \dfrac{1}{{a}^{m}} } \\

\qquad\leadsto\quad \sf\boxed{\sf \pink{\dfrac{  {x}^{2}  }{9  {y}^{6} } } }\\

Therefore, value of  \sf{{\Bigg  ( \dfrac{3 {x}^{2}y }{9x {y}^{4} }} \Bigg) }^{2} is  \sf { \dfrac { {x}^{2} }{ 9 {y}^{6} } } \\.

Know More :

 \boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{array}}

Answered by kishan12349
0
Sorry I don’t know this answer I’m very sorry
Mark me as brainiest
Similar questions