Math, asked by Anonymous, 15 days ago

 \sf \bigstar \red{ \: prove :  \frac{tan ^{2} \theta }{ tan ^{2} \theta \: - 1 }  +  \frac{cosec ^{2}  \theta}{sec ^{2} \theta \:  -  {cosec}^{2}   \theta}  =  \frac{1}{ {sin}^{2 }  \theta -  {cos}^{2} \theta } }
⠀⠀
⟹ Don't spam
⟹ Thank you :))

Answers

Answered by Anonymous
24

Answer:

Step-by-step explanation:

Answer:

\frac{tan^{2}\theta}{tan^{2}\theta-1}+\frac{cosec^{2}\theta}</p><p>{sec^{2}\theta-cosec^{2}\theta}=\frac{1}{sin^{2}\theta-cos^{2}\theta}

tan2θ−1tan2θ+sec2θ−cosec2θcosec2θ=sin2θ−cos2θ1

Step-by-step explanation:

LHS=

\frac{tan^{2}\theta}{tan^{2}\theta-1}+\frac{cosec^{2}\theta}</p><p>{sec^{2}\theta-cosec^{2}\theta}

  • LHS=tan2θ−1tan2θ+sec2θ−cosec2θcosec2θ

)</p><p>=\frac{\frac{sin^{2}\theta}{cos^{2}\theta}}{\frac{sin^{2}\theta}{cos^{2}\theta}-1}+\frac{\frac{1}{sin^{2}\theta}}{\frac{1}{cos^{2}\theta}-\frac{1}{sin^{2}\theta}}

  • =cos2θsin2θ−1cos2θsin2θ+cos2θ1−sin2θ1sin2θ1

=\frac{\frac{sin^{2}\theta}{cos^{2}\theta}}{\frac{sin^{2}\theta-cos^{2}\theta}{cos^{2}\theta}}+\frac{\frac{1}{sin^{2}\theta}}{\frac{sin^{2}\theta-cos^{2}\theta}{cos^{2}\theta sin^{2}\theta}}))

  • =cos2θsin2θ−cos2θcos2θsin2θ+cos2θsin2θsin2θ−cos2θsin2θ1

=\frac{sin^{2}\theta}{sin^{2}\theta-cos^{2}\theta}+\frac{cos^{2}\theta}{sin^{2}\theta-cos^{2}\theta}

=sin2θ−cos2θsin2θ+sin2θ−cos2θcos2θ

=\frac{sin^{2}\theta+cos^{2}\theta}{sin^{2}\theta-cos^{2}\theta}

  • =sin2θ−cos2θsin2θ+cos2θ

)\begin{gathered}=\frac{1}{sin^{2}\theta-cos^{2}\theta}\\=RHS\end{gathered}

  • =sin2θ−cos2θ1=RHS

Therefore,

\frac{tan^{2}\theta}{tan^{2}\theta-1}+\frac{cosec^{2}\theta}{sec^{2}\theta-cosec^{2}\theta}=\frac{1 }{sin^{2}\theta-cos^{2}\theta}

Hence Proved.

Similar questions