Math, asked by Anonymous, 5 months ago

\sf \bullet \ \ \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2} = \dfrac{1-cos}{1+cos}

Answers

Answered by Anonymous
27

Step-by-step explanation:

\LARGE{\bf{\underline{\underline\color{blue}{GIVEN:-}}}}

\sf \bullet \ \ \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2} = \dfrac{1-cos}{1+cos}

\LARGE{\bf{\underline{\underline\color{blue}{SOLUTION:-}}}}

LHS:

\sf \to \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2}→

Expand the fractions using (a+b+c)²=a²+b²+c²+2ab+2bc+2ca.

\sf \to \dfrac{(cos^2-2sincos+sin^2-2cos+2sin+1)}{(cos^2+2sincos+sin^2+2cos+2sin+1)}→

Rearrange the terms.

\sf \to \dfrac{(cos^2+sin^2-2sincos-2cos+2sin+1)}{(cos^2+sin^2+2sincos+2cos+2sin+1)}→

We know that cos²A+sin²A=1.

\sf \to \dfrac{1-2sincos-2cos}{2sin+1}→

Now here, take -2cos common from the numerator and +2cos common from the denominator.

\sf \to \dfrac{1-2cos(sin+2)}{2sin+1}→

Now, rearrange the terms, add 1 and 1 and take 2 common.

 \to\sf\dfrac{1+1+2sin-2cos}{sin+1}→

\to\sf\dfrac{2+2sin-2cos}{sin+1}→

Take 2 common.

\to \sf \dfrac{ 2(1+sin) -2cos(sin+1) }{ 2(1+sin) + 2cos(sin +1 ) }→

\to \sf{\red{\dfrac{1-cosA}{1+cosA} }}→ </p><p>

LHS=RHS.

HENCE PROVED!

FUNDAMENTAL TRIGONOMETRIC RATIOS:

\begin{gathered}\begin{gathered}\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\ \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}\end{gathered}\end{gathered}

T-RATIOS:

\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3} }{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp; 1 &amp; \sqrt{3} &amp; \rm Not \: De fined \\ \\ \rm cosec A &amp; \rm Not \: De fined &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm Not \: De fined \\ \\ \rm cot A &amp; \rm Not \: De fined &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered}

Answered by Anonymous
4

\huge\underbrace\mathrm\purple{Answer}

Attachments:
Similar questions