Math, asked by WildCat7083, 3 months ago


 \sf \: class \: 12 \\  \sf \: maths
 \large\color{purple}\underline { \tt{\underline{ \tt{ \boxed { Question }}}}}
The wire of length 28m is to be cut into two pieces. One of the two pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of circle and square is minimum?
 \tt \: no \: spams\:pls \\  \tt \: right \: answer \:  = 10 \: thanks \:
________________________________________________
 \sf \: @WildCat7083

Attachments:

Answers

Answered by mathdude500
18

Concept Used :-

Maxima or Minima by Differentiation.

HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION

  • Differentiate the given function f(x).

  • let f'(x) = 0 and find critical points.

  • Then find the second derivative, i.e. f''(x).

  • Apply those critical points in the second derivative.

  • The function f (x) is maximum when f''(x) < 0.

  • The function f (x) is minimum when f''(x) > 0.

\large\underline{\bf{Solution-}}

Let the wire be AB which is 28 m.

Let the length of wire is cut in to two pieces at point P such that AP is converted in to square of side 'x' meter and PB is converted in to circle of radius 'y'.

It implies,

AP = Perimeter of square = 4x meter

PB = Perimeter of circle = 2πy

Since, AP + PB = 28

\rm :\implies\:4x + 2\pi \: y = 28

\rm :\implies\:2x + \pi \: y = 14

\bf\implies \:y = \dfrac{14 - 2x}{\pi}  -  - (1)

Let suppose that combined area is represented by A.

\rm :\longmapsto\:A = Area_{(circle)} + Area_{(square)}

\rm :\longmapsto\:A = \pi \:  {y}^{2}  +  {x}^{2}

Now substituting the value of y, from equation (1), we get

\rm :\longmapsto\:A = \pi \:  {\bigg(\dfrac{14 - 2x}{\pi}  \bigg) }^{2}  +  {x}^{2}

\rm :\longmapsto\:A = \dfrac{1}{\pi} {(14 - 2x)}^{2} +  {x}^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} A = \dfrac{d}{dx} \bigg(\dfrac{1}{\pi} {(14 - 2x)}^{2} +  {x}^{2} \bigg)

\rm :\longmapsto\:\dfrac{dA}{dx} = \dfrac{1}{\pi}(2) {(14 - 2x)}\dfrac{d}{dx}(14 - 2x) + 2x

\rm :\longmapsto\:\dfrac{dA}{dx} = \dfrac{1}{\pi}(2)(14 - 2x)( - 2) + 2x

\rm :\longmapsto\:\dfrac{dA}{dx} = \dfrac{ - 4}{\pi}(14 - 2x) + 2x  -  -  - (2)

For maxima or minima,

\rm :\longmapsto\:\dfrac{dA}{dx} = 0

\rm :\longmapsto\: \dfrac{ - 4}{\pi}(14 - 2x) + 2x  = 0

\rm :\longmapsto\: \dfrac{4}{\pi}(14 - 2x)  = 2x

\rm :\longmapsto\: \dfrac{2}{\pi}(14 - 2x)  = x

\rm :\longmapsto\:28 - 4x = \pi \: x

\rm :\longmapsto\:28 = 4x +  \pi \: x

\rm :\longmapsto\:28 = (4 +  \pi) \: x

\bf\implies \:x = \dfrac{28}{4 + \pi}

Again Differentiate equation (2), w. r. t. x, both sides,

\rm :\longmapsto\:\dfrac{ {d}^{2} A}{ {dx}^{2} }  = \dfrac{ - 4}{\pi}( - 2) + 2

\rm :\longmapsto\:\dfrac{ {d}^{2} A}{ {dx}^{2} }  = \dfrac{8}{\pi} + 2

\bf\implies \:\:\dfrac{ {d}^{2} A}{ {dx}^{2} } &gt; 0

\bf\implies \:A \: is \: minimum \: when \: x = \dfrac{28}{4 + \pi}

So,

Length of two pieces are

 \sf \: AP = 4x = 4 \times \dfrac{28}{4 + \pi} = \dfrac{112}{4 + \pi}  \: meter

\sf \: PB = 2\pi \: y = 2\pi \: \bigg(\dfrac{14 - 2x}{\pi}\bigg) = 2(14 - 2x)

Please find the attachment after this

Attachments:
Answered by singhamanpratap0249
19

Lets take dA/dx = 0

Thus  \:  \frac{x}{2\pi}  -  \frac{28 - x}{8}  = 0 \\ 4x = 28\pi - \pi \: x \\ 4x + \pi \: x = 28\pi \\ x(4 + \pi) = 28\pi \\ x =  \frac{28\pi}{4 + \pi}

other \: part \:  = 28 - x \\ where \: x \:  =  \frac{28\pi}{4 + \pi}  \\  = 28 -  \frac{28\pi}{4 + \pi}  \\  =  \frac{112 + 28\pi - 28\pi}{4 + \pi}  \\  =  \frac{112}{4 + \pi}

now \: again \: differentiating \: we \: get \:  \\  \frac{d ^{2}A }{d {x}^{2} }  =  \frac{1}{2\pi}  +  \frac{1}{8}  =  + ve

A \: is \: minimum \:  \\ where \: x \:  =  \frac{28\pi}{4 + \pi}  \: and \: 28 - x =  \frac{112}{4 + \pi}

Attachments:
Similar questions