Math, asked by Anonymous, 5 hours ago

 \sf{cosA+cos2A+cos3A+ \cdot \cdot \cdot \cdot \cdot \cdot \:cosnA}

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \tt{ cos(A) +  cos(2A)   +  cos(3A) +  \cdots +  cos(nA)  }

 \displaystyle \tt{  =  \sum^{n}_{k = 1}  cos(kA)  }

 \displaystyle \tt{  =  \sum^{n}_{k = 1}   \dfrac{ {e}^{i(kA)}  +{e}^{ - i(kA)}  }{2}  }

 \displaystyle \tt{  =  \sum^{n}_{k = 1}   \dfrac{ {e}^{i(kA)}   }{2} + \sum^{n}_{k = 1}   \dfrac{ {e}^{ - i(kA)}   }{2}   }

 \displaystyle \tt{  =  \dfrac{1}{2}  \sum^{n}_{k = 1}   {e}^{i(kA)}   + \dfrac{1}{2}  \sum^{n}_{k = 1}  {e}^{ - i(kA)}    }

 \displaystyle \tt{  =  \dfrac{1}{2} \left \{   {e}^{i(A)}  + {e}^{i(2A)}  + {e}^{i(3A)} +  \cdots +{e}^{i(nA)} \right \}  + \dfrac{1}{2}  \left \{   {e}^{ - i(A)}  + {e}^{ - i(2A)}  + {e}^{ - i(3A)} +  \cdots +{e}^{ - i(nA)} \right \}    }

 \displaystyle \tt{  =  \dfrac{1}{2} \left \{   {e}^{iA}  +  \left({e}^{iA} \right)^{2}   +  \left({e}^{iA} \right)^{3} +  \cdots + \left({e}^{iA} \right)^{n} \right \}  + \dfrac{1}{2}  \left \{   {e}^{ - iA}  +  \left({e}^{ - iA} \right)^{2}   +  \left({e}^{ - iA} \right)^{3} +  \cdots + \left({e}^{ - iA} \right)^{n} \right \}    }

 \displaystyle \tt{  =  \dfrac{ {e}^{iA} }{2} \left \{  1 +  \left({e}^{iA} \right)   +  \left({e}^{iA} \right)^{2} +  \cdots + \left({e}^{iA} \right)^{n - 1} \right \}  + \dfrac{{e}^{ - iA}}{2}  \left \{   1  +  \left({e}^{ - iA} \right)   +  \left({e}^{ - iA} \right)^{2} +  \cdots + \left({e}^{ - iA} \right)^{n - 1} \right \}    }

 \displaystyle \tt{  =  \dfrac{ {e}^{iA} }{2} \left \{   \dfrac{ \left({e}^{iA} \right)^{n}  - 1}{{e}^{iA} - 1}\right \}  + \dfrac{{e}^{ - iA}}{2}  \left \{ \dfrac{ \left({e}^{ - iA} \right)^{n}  - 1}{{e}^{ - iA} - 1} \right \}    }

 \displaystyle \tt{  =  \dfrac{ {e}^{iA} }{2} \left \{   \dfrac{ {e}^{i(nA)} - 1}{{e}^{iA} - 1}\right \}  + \dfrac{{e}^{ - iA}}{2}  \left \{ \dfrac{ {e}^{ - i(nA)}  - 1}{{e}^{ - iA} - 1} \right \}    }

 \displaystyle \tt{  =  \dfrac{ {e}^{iA} }{2} \left \{   \dfrac{ {e}^{i( \frac{n}{2})A} - {e}^{ - i( \frac{n}{2})A}}{{e}^{i (\frac{A}{2})} -{e}^{ - i (\frac{A}{2})}}\right \} \cdot \dfrac{ {e}^{i( \frac{n}{2})A}}{ {e}^{i( \frac{A}{2})}}  + \dfrac{{e}^{ - iA}}{2}  \left \{   \dfrac{ {e}^{ - i( \frac{n}{2})A} - {e}^{ i( \frac{n}{2})A}}{{e}^{ - i (\frac{A}{2})} -{e}^{ i (\frac{A}{2})}}\right \} \cdot \dfrac{ {e}^{ - i( \frac{n}{2})A}}{ {e}^{ - i( \frac{A}{2})}} }

 \displaystyle \tt{  =  \dfrac{ 1 }{2} \left \{   \dfrac{ {e}^{i( \frac{n}{2})A} - {e}^{ - i( \frac{n}{2})A}}{{e}^{i (\frac{A}{2})} -{e}^{ - i (\frac{A}{2})}}\right \} \cdot {e}^{i( \frac{n}{2})A} \cdot{e}^{i( \frac{A}{2})} + \dfrac{1}{2}  \left \{   \dfrac{ {e}^{ - i( \frac{n}{2})A} - {e}^{ i( \frac{n}{2})A}}{{e}^{ - i (\frac{A}{2})} -{e}^{ i (\frac{A}{2})}}\right \} \cdot  {e}^{ - i( \frac{n}{2})A} \cdot{e}^{ - i( \frac{A}{2})} }

 \displaystyle \tt{  =  \dfrac{ 1 }{2} \left \{   \dfrac{ {e}^{i( \frac{n}{2})A} - {e}^{ - i( \frac{n}{2})A}}{{e}^{i (\frac{A}{2})} -{e}^{ - i (\frac{A}{2})}}\right \} \cdot {e}^{i( \frac{n + 1}{2})A} + \dfrac{1}{2}  \left \{   \dfrac{ {e}^{ - i( \frac{n}{2})A} - {e}^{ i( \frac{n}{2})A}}{{e}^{ - i (\frac{A}{2})} -{e}^{ i (\frac{A}{2})}}\right \} \cdot  {e}^{ - i( \frac{n + 1}{2})A} }

 \displaystyle \tt{  =  \dfrac{  {e}^{ i( \frac{n + 1}{2})A}+  {e}^{ - i( \frac{n + 1}{2})A}}{2} \left \{   \dfrac{ {e}^{i( \frac{n}{2})A} - {e}^{ - i( \frac{n}{2})A}}{{e}^{i (\frac{A}{2})} -{e}^{ - i (\frac{A}{2})}}\right \} }

 \displaystyle \tt{  =  cos \left( \dfrac{(n + 1)A}{2}  \right)  \left \{   \dfrac{ sin \left(\dfrac{nA}{2} \right)  }{sin \left(\dfrac{A}{2} \right)}\right \} }

 \displaystyle \tt{  =  cos \left \{\dfrac{(n + 1)A}{2}  \right \} \cdot   \dfrac{ sin \left(\dfrac{nA}{2} \right)  }{sin \left(\dfrac{A}{2} \right)}}

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: \sf{cosA+cos2A+cos3A+ \cdot \cdot \cdot \cdot \cdot \cdot \:cosnA}

Before we derive the sum of above series, Let we first derive an expression for

\rm :\longmapsto\: \: cosa + cos(a + b) + cos(a + 2b) +  -  -  -  + cos[a + (n - 1)b]

can be rewritten as

\rm \:  =  \: \displaystyle\sum_{k=0}^{n-1}\sf cos(a + kb)

can be further rewritten as

\rm \:  =  \:\dfrac{1}{2sin\dfrac{b}{2} }  \displaystyle\sum_{k=0}^{n-1}\sf 2 \: cos(a + kb) \: sin\dfrac{b}{2}

We know,

\boxed{\tt{ 2sinx \: cosy \:  =  \: sin(x + y) + sin(x - y) \: }}

So, using this identity we get

\rm \:  =  \:\dfrac{1}{2sin\dfrac{b}{2} }  \displaystyle\sum_{k=0}^{n-1}\sf \bigg(sin\bigg[\dfrac{b}{2}  + a + kb\bigg] + sin\bigg[\dfrac{b}{2} - a - kb \bigg]\bigg)

\rm \:  =  \:\dfrac{1}{2sin\dfrac{b}{2} }  \displaystyle\sum_{k=0}^{n-1}\sf \bigg(sin\bigg[\dfrac{2a + (2k + 1)b}{2}\bigg] - sin\bigg[\dfrac{2a + (2k - 1)b}{2}\bigg]\bigg)

\rm \:  =  \:\dfrac{1}{2sin\dfrac{b}{2} }  \displaystyle\sum_{k=0}^{n-1}\sf \bigg(sin\bigg[a + \dfrac{(2k + 1)b}{2}\bigg] - sin\bigg[a + \dfrac{(2k - 1)b}{2}\bigg]\bigg)

\rm \:  =  \:\dfrac{1}{2sin\dfrac{b}{2} }  \sf \bigg(sin\bigg[a + \dfrac{(2n  - 1)b}{2}\bigg] - sin\bigg[a  -  \dfrac{b}{2} \bigg]\bigg)

We know,

\boxed{\tt{ sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg] \: sin\bigg[\dfrac{x - y}{2} \bigg]}}

\rm \:  =  \:\dfrac{1}{2sin\dfrac{b}{2} }  \sf \bigg(2cos \dfrac{1}{2} \bigg[a + \dfrac{(2n  - 1)b}{2} + a - \dfrac{b}{2} \bigg]sin \dfrac{1}{2} \bigg[a + \dfrac{(2n  - 1)b}{2} -  a  + \dfrac{b}{2}\bigg]\bigg)

\rm \:  =  \: \dfrac{cos\bigg[a + \dfrac{(n - 1)b}{2} \bigg]sin\bigg[\dfrac{nb}{2} \bigg]}{sin\bigg[\dfrac{b}{2} \bigg]}

So, we get

\rm \: \: cosa + cos(a + b) + cos(a + 2b) +  -  -  -  + cos[a + (n - 1)b] \\  \\ \rm \:  =  \: \dfrac{cos\bigg[a + \dfrac{(n - 1)b}{2} \bigg]sin\bigg[\dfrac{nb}{2} \bigg]}{sin\bigg[\dfrac{b}{2} \bigg]}  \:  \:  \:  \:  \:  \:  \:  \:

Now, we replace a by A and b by A, we get

\rm :\longmapsto\:\sf{cosA+cos2A+cos3A+ \cdot \cdot \cdot \cdot \cdot \cdot \:cosnA}

\rm \:  =  \: \dfrac{cos\bigg[A + \dfrac{(n - 1)A}{2} \bigg]sin\bigg[\dfrac{nA}{2} \bigg]}{sin\bigg[\dfrac{A}{2} \bigg]}

\rm \:  =  \: \dfrac{cos\bigg[ \dfrac{2A + (n - 1)A}{2} \bigg]sin\bigg[\dfrac{nA}{2} \bigg]}{sin\bigg[\dfrac{A}{2} \bigg]}

\rm \:  =  \: \dfrac{cos\bigg[ \dfrac{2A + nA - A}{2} \bigg]sin\bigg[\dfrac{nA}{2} \bigg]}{sin\bigg[\dfrac{A}{2} \bigg]}

\rm \:  =  \: \dfrac{cos\bigg[ \dfrac{A + nA}{2} \bigg]sin\bigg[\dfrac{nA}{2} \bigg]}{sin\bigg[\dfrac{A}{2} \bigg]}

\rm \:  =  \: \dfrac{cos\bigg[ \dfrac{(n + 1)A}{2} \bigg]sin\bigg[\dfrac{nA}{2} \bigg]}{sin\bigg[\dfrac{A}{2} \bigg]}

Hence,

\rm :\longmapsto\:\rm{cosA+cos2A+cos3A+ \cdot \cdot \cdot \cdot \cdot \cdot \:cosnA}  \\ \\ \rm \:  =  \: \dfrac{cos\bigg[ \dfrac{(n + 1)A}{2} \bigg]sin\bigg[\dfrac{nA}{2} \bigg]}{sin\bigg[\dfrac{A}{2} \bigg]}

Similar questions