Math, asked by Sreyash577, 3 months ago

\sf\:  \dfrac{3m - 1}{3} -  \dfrac{2m + 2}{6}  = 5

Answers

Answered by 10ayushranjan
2

Answer:

=\frac{2(3m-1)-(2m+2)}{6} = 5\\

=\frac{6m-2-2m-2}{6} = 5

=4m-4 = 5X6

=4(m-1) = 5 X 6

=m-1 = \frac{30}{4}

=m=\frac{15}{2} + 1

=m=\frac{17}{2}

m=8\frac{1}{2}

Answered by Anonymous
15

To Find :-

  • Value of m

Solution:-

Given that,

  • \sf\:  \dfrac{3m - 1}{3} - \dfrac{2m + 2}{6} = 5

Here,

\sf:\implies \: \dfrac{3m - 1}{3} -  \dfrac{2m + 2}{6}  = 5

\sf :\implies \:\dfrac{2(3m - 1) - (2m + 2)}{6}  = 5

\sf :\implies \:\dfrac{6m - 2 - 2m - 2}{6}  = 5

\sf :\implies \:\dfrac{4m - 4}{6}  = 5

\sf:\implies \:4m - 4 = 30

\sf :\implies \:4m = 34

\bf:\implies \:m = \dfrac{17}{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

Verification:-

On substituting the value of m, we get

\sf\:   \longrightarrow \: \dfrac{3 \times \dfrac{17}{2}  - 1}{3} -  \dfrac{2 \times \dfrac{17}{2}  + 2}{6}

\sf \:   \longrightarrow \:\dfrac{51 - 2}{6}  - \dfrac{17 + 2}{6}

\sf\:   \longrightarrow \:\dfrac{49}{6}  - \dfrac{19}{6}

\sf\:   \longrightarrow \:\dfrac{49 - 19}{6}

\sf \:   \longrightarrow \:\dfrac{30}{6}

\sf \:   \longrightarrow \:5

\bf\implies LHS = RHS

Verified

______________________________

Similar questions