Math, asked by Anonymous, 7 months ago

\sf\dfrac{4}{cot^230^{\circ} } +\dfrac{1}{sin^2 30^{\circ}} -2 cos^245^{\circ}-sin^2 0^{\circ}=​

Answers

Answered by AdorableMe
6

Answer :-

\bf{\dfrac{13}{ 3} }

Step-by-step explanation :-

\sf \dfrac{4}{cot^230^{\circ} } +\dfrac{1}{sin^2 30^{\circ}} -2 cos^245^{\circ}-sin^2 0^{\circ}

\displaystyle \sf{=\frac{4}{(\sqrt{3})^2}+\frac{1}{(\frac{1}{2} )^2} -2\times (\frac{1}{\sqrt{2} } )^2-(0)^2 }

\displaystyle \sf{=\frac{4}{3}+\frac{1}{1/4}-2\times \frac{1}{2}-0  }

\displaystyle \sf{=\frac{4}{3}+4-1 }

\displaystyle \sf{=\frac{4}{3}+3 }

\displaystyle \sf{=\frac{4+9}{3} }

\displaystyle \sf{=\frac{13}{3} }

Formulas used :-

\bullet\ \sf{cot30^\circ=\sqrt{3}}

\bullet\ \sf{sin30^\circ=\dfrac{1}{2} }

\bullet\ \sf{cos45^\circ=\dfrac{1}{\sqrt{2}} }

\bullet\ \sf{sin0^\circ=0}

Answered by Anonymous
7

 \frac{4}{cot^{2}30° } \:  +  \:  \frac{1}{sin^{2}30° }  \:  -  \: 2cos ^{2}45° \:  -  \: sin^{2}0 \\ \\  =  \frac{4}{( \sqrt{3} )^{2} }  +  \frac{1}{( \frac{1}{2})^{2}  }  \:  - 2 \times ( \frac{1}{ \sqrt{2} } ) ^{2}  - 0 \\  \\  =  \frac{4}{3}  + 4 - 1 \\  \\  =  \frac{4}{3}   + 3 \\  \\  =  \frac{13}{3}   Hope it's help you.......

Similar questions