Math, asked by Sandipan34, 6 months ago

 \sf  \:  \:  \dfrac{ \tan(a) }{ \sec(a) - 1 }  +  \dfrac{ \tan(a) }{ \sec(a)  + 1}  = 2 \cosec(a)


Need prove :(

Answers

Answered by MysticalBlush
43

Step-by-step explanation:

\huge\boxed{\fcolorbox{cyan}{apricot}{⛄~MysticalBlush~⛄}}

\huge\bold\red{LHS} :-

\huge\bold\green{Formula \: used} ,

 \frac{tan \: a \: (sec \: a \:  + 1) \:  +  \: tan \: a \: (sec \: a \:  - 1)}{(sec \: a  \: - \:  1) \: (sec \: a \:  +  \: 1)}  \\  \\  =  >  \frac{tan \: a \: (sec \: a \:  +  \: 1 \:  +  \: sec \: a \:  -  \: 1)}{ {sec}^{2}  \:  -  \: 1} \\  \\  =  >  \frac{tan \: a \: (2 \: sec \: a)}{ {sec}^{2}  \:  -  \: 1}  \\  \\  =  >  \frac{2 \: sec \: a \:  \times \: tan \: a }{1 \:  +  \:  {tan}^{2} \:  -  \: 1 }  \\  \\  =  >  \frac{2 \: sec \: a \:  \: tan \: a}{ {tan}^{2} \: a }  \\  \\  =  >  \frac{2 \: sec \: a}{tan \: a }  \\  \\  =  > 2 \:  \: sec \: a \:  \: cot \: a \\  \\  =  > 2 \:  \times  \:  \frac{1}{cos \: a} \times  \frac{cos \: a}{sin \: a}   \\  \\  =  > 2 \:  \times  \: cosec \: a \:

\huge\bold\orange{Hence \: proved} \huge\bold\green{~✔~}


MisterIncredible: Great ^_°
Answered by VishnuPriya2801
81

Answer:-

To Prove:

 \sf \:  \dfrac{ \tan(a) }{ \sec(a) - 1 } + \dfrac{ \tan(a) }{ \sec(a) + 1} = 2 \cosec(a)

Taking LCM we get,

 \implies \sf \:  \frac{ \tan(a)( \sec(a)   + 1) +  \tan(a) ( \sec(a)  - 1)}{( \sec(a) - 1)( \sec(a)  + 1) }  = 2 \csc(a)  \\\\  \\ \implies \sf \:  \frac{ \tan(a)  \sec(a) +  \tan(a)  \sec(a)   -  \tan(a) }{ { \sec}^{2} (a) -  {1}^{2} }  = 2 \:  \csc(a)

[ (a + b)(a - b) = - ]

Using the identity sec² a - 1 = tan² a in LHS we get,

 \: \implies \sf \:  \frac{2 \tan(a) \sec(a) }{ { \tan}^{2} (a)}  = 2 \:  \csc(a) \\

using tan a = sin a/cos a and sec a = 1/cos a in LHS we get,

 \implies \sf \: 2 \times  \frac{ \frac{1}{ \cos(a) } }{ \frac{ \sin(a) }{ \cos(a) } }  = 2 \:  \csc(a)  \\  \\  \\ \implies \sf \: 2 \times  \frac{1}{ \cos(a) }  \times  \frac{ \cos(a) }{ \sin(a) }  = 2 \:  \csc(a)  \\  \\  \\ \implies \sf \:  \frac{2}{ \sin(a) }  = 2 \csc(a) \\  \\

using 1/sin a = Cosec a we get,

2 Cosec a = 2 Cosec a.

Hence Proved.


MisterIncredible: Brilliant as always ⊂(◉‿◉)つ
Similar questions