Math, asked by Sandipan34, 4 months ago

 \sf  \:  \:  \dfrac{ \tan(a) }{ \sec(a) - 1 }  +  \dfrac{ \tan(a) }{ \sec(a)  + 1}  = 2 \cosec(a)


Need prove :(​

Answers

Answered by Anonymous
58

{\purple{\boxed{\large{\bold{Formula's}}}}}

 \\ \sf • \:  \tan(a)  =  \frac{ \sin(a) }{ \cos(a) }  \\  \\  \sf • \:  \sec(a)  =  \frac{1}{ \cos(a) }  \\  \\ \sf • \:  \cosec(a)  =  \frac{1}{ \sin(a) }  \\  \\ \sf  •\: 1 -  \cos {}^{2} (a)  =  \sin {}^{2} (a)

 \\

\underline{ \mathfrak{ \: To\:Prove:- \: }} \\ \\

 \\

 \sf \dashrightarrow \:  \:  \dfrac{ \tan(a) }{ \sec(a) - 1 }  +  \dfrac{ \tan(a) }{ \sec(a)  + 1}  = 2 \cosec(a)

 \\

\underline{ \mathfrak{ \: Proof :- \: }} \\ \\

 \\

 \sf \dashrightarrow \:  \:  \dfrac{ \tan(a) }{ \sec(a) - 1 }  +  \dfrac{ \tan(a) }{ \sec(a)  + 1}

 \\

\sf \dashrightarrow \:  \frac{ \dfrac{ \sin(a) }{ \cos(a) } }{ \dfrac{1}{ \cos(a) } - 1 } \:  \:  +  \:  \:  \frac{ \dfrac{ \sin(a) }{ \cos(a) } }{ \dfrac{1}{ \cos(a) }  + 1}

 \\

\sf  \dashrightarrow \:  \dfrac{ \dfrac{ \sin(a) }{ \cos(a) } }{ \dfrac{1 -  \cos(a) }{ \cos(a) } }  \:  \:  +  \:  \:  \: \dfrac{ \dfrac{ \sin(a) }{ \cos(a) } }{ \dfrac{1  +   \cos(a) }{ \cos(a) } }

 \\

\sf \dashrightarrow  \:  \dfrac{ \sin(a) }{  \cancel{\cos(a)} }  \times  \dfrac{  \cancel{\cos(a)} }{1 -  \cos(a) }  \:  \:  +  \:  \:  \dfrac{ \sin(a) }{  \cancel{\cos(a)} } \times  \dfrac{  \cancel{\cos(a)} }{1 +  \cos(a) }

 \\

\sf  \dashrightarrow \:  \dfrac{ \sin(a) }{1 -  \cos(a) }   \:  \: +  \:  \:  \:  \dfrac{ \sin(a) }{1 +  \cos(a) }

 \\

\sf\dashrightarrow  \:  \dfrac{ \sin(a) (1 +  \cos(a) +  \sin(a) (1 -  \cos(a)}{(1 -  \cos(a)(1 +  \cos(a) }

 \\

\sf \dashrightarrow  \:   \dfrac{ \sin(a) (1 +  \cos(a)  + 1 -  \cos(a )}{(1 -  \cos {}^{2} (a )}

 \\

\sf  \dashrightarrow \:  \dfrac{ 2\sin(a) }{ \sin {}^{2} (a) }  =  \dfrac{2}{ \sin(a) }  = 2 \cosec(a)

 \\

\;\;\underline{\textbf{\textsf{Hence -}}}

 \\

 \leadsto  \  {\boxed{\tt{LHS = RHS}}}

 \therefore{ \underline{\bf{(Proved.....!!)}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Gripex
6

 \frac{tan \: a \: (sec \: a \:  + 1) \:  +  \: tan \: a \: (sec \: a \:  - 1)}{(sec \: a  \: - \:  1) \: (sec \: a \:  +  \: 1)}  \\  \\  =  >  \frac{tan \: a \: (sec \: a \:  +  \: 1 \:  +  \: sec \: a \:  -  \: 1)}{ {sec}^{2}  \:  -  \: 1} \\  \\  =  >  \frac{tan \: a \: (2 \: sec \: a)}{ {sec}^{2}  \:  -  \: 1}  \\  \\  =  >  \frac{2 \: sec \: a \:  \times \: tan \: a }{1 \:  +  \:  {tan}^{2} \:  -  \: 1 }  \\  \\  =  >  \frac{2 \: sec \: a \:  \: tan \: a}{ {tan}^{2} \: a }  \\  \\  =  >  \frac{2 \: sec \: a}{tan \: a }  \\  \\  =  > 2 \:  \: sec \: a \:  \: cot \: a \\  \\  =  > 2 \:  \times  \:  \frac{1}{cos \: a} \times  \frac{cos \: a}{sin \: a}   \\  \\  =  > 2 \:  \times  \: cosec \: a \:

Done

Similar questions