Math, asked by saryka, 2 months ago

\sf{\dfrac{x^2-5x+7}{-2x^2+3x+2}>0}
⠀⠀⠀
Solve this by wavy curve method.​

Answers

Answered by mathdude500
86

Given Question :-

\rm :\longmapsto\:\dfrac{ {x}^{2} - 5x + 7 }{ -  {2x}^{2}  + 3x + 2}  > 0

\large\underline{\sf{Solution-}}

We know that,

If in a quadratic polynomial f(x) = ax² + bx + c,

 \sf \: a > 0 \: and \:  {b}^{2} - 4ac < 0, \: then \: f(x) > 0

Let consider, the expression

\rm :\longmapsto\: {x}^{2} - 5x + 7

we have,

\rm :\longmapsto\:a = 1, \: b =  - 5, \: c = 7

\rm :\implies\:a = 1 > 0 \: and \:  {( - 5)}^{2} - 4 \times 7 =  - 3 < 0

\bf\implies \: {x}^{2}  - 5x + 7 > 0

So,

Now Consider,

\rm :\longmapsto\:\dfrac{ {x}^{2} - 5x + 7 }{ -  {2x}^{2}  + 3x + 2}  > 0

\rm :\longmapsto\:As \:  {x}^{2}  - 5x + 7 >0

\rm :\implies\: -  {2x}^{2} + 3x + 2 > 0

\rm :\implies\:  - ({2x}^{2}  -  3x  - 2) > 0

\rm :\implies\:{2x}^{2}  -  3x  - 2<  0

\rm :\longmapsto\:2 {x}^{2}  - 4x + x - 2 < 0

\rm :\longmapsto\:2x(x - 2) + 1(x - 2) < 0

\rm :\longmapsto\:(2x + 1)(x - 2)  < 0

\begin{gathered}\boxed{\begin{array}{c|c} \bf interval & \sf sign \: of \:  {2x}^{2} - 3x - 4  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x <  -  \dfrac{1}{2}  & \sf  + ve \\ \\ \sf  -  \dfrac{1}{2} < x < 2  & \sf  -  \: ve \\ \\ \sf x > 2 & \sf  +  \: ve \end{array}} \\ \end{gathered}

\bf\implies \: - \dfrac{1}{2}  < x < 2

\bf\implies \:x \in \: \bigg( - \dfrac{1}{2},2  \bigg)

Attachments:
Similar questions