Math, asked by ShivajiMaharaj45, 9 months ago

\sf Differentiate\:following \:function \: w.r.t.\: x


\sf {e}^{{x}^{2}{sin}^{2}+ {cos}^{2}x}



\sf Answer\:is \:  {e}^{{x}^{2}{sin}^{2}+ {cos}^{2}x} (({x}^{2}-1)sin 2x + 2x {sin}^{2}x)


\sf ContentQualityAnswerRequired

Answers

Answered by Anonymous
46

Solution

Derivative of y is \sf {e}^{{x}^{2}{sin}^{2}+ {cos}^{2}x}[sin2x(x^2 - 1) + 2x sin^2 x]

Given

\sf \: y =  \ {e}^{{x}^{2}{sin}^{2}+ {cos}^{2}x}

To finD

The derivative of y

Differentiating y w.r.t to x,we get :

 \sf \: y' = (\sf {e}^{{x}^{2}{sin}^{2}+ {cos}^{2}x}) \times  \dfrac{d( {x}^{2} {sin}^{2}x +  {cos}^{2}x)  }{dx}  \\  \\  \longrightarrow \:  \sf \: y' =( {e}^{{x}^{2}{sin}^{2}+ {cos}^{2}x } )  \times   \dfrac{d(cos {}^{2}x) }{dx}  +  \dfrac{d(x {}^{2} {sin}^{2}x)  }{dx}

Using Product Rule for cos²x and x²sin²x

 \sf a =  cos {}^{2} x = (cos \: x)(cos \: x) = uv \\  \\  \implies \:  \sf \: a' =  \dfrac{d(cos \: x)}{dx}(cos \: x )+  \frac{d(cos \: x)}{dx} (cos \ x ) \\  \\  \implies \:  \sf \: a' = ( -  \: sin \: x)cos \: x + ( - sin \: x)(cos \: x) \\  \\  \implies \:  \sf \: a' =  - 2 \: sin \: x \: cos \: x \\  \\  \implies \:  \sf \: a' =  - sin2x

Also,

 \sf \: b' =  {x}^{2} {sin}^{2}x = (x^2)(sin^2x) = uv   \\  \\   \implies \sf \: b' =  \frac{d(x^2)}{dx}(  \: sin^2 \: x) +  \frac{d(sin^2 x)}{dx} (x^2 )\\   \\  \implies \:  \sf \: b' = 2x(sin^2 x)  + x^2 sin2x  \\  \\  \implies \:  \sf \: b' = x^2 sin2x + 2x sin^2x

Now,

 \longrightarrow \sf \: y' = {e}^{{x}^{2}{sin}^{2}+ {cos}^{2}x} \: [(x^2 sin2x + 2x sin^2x  \: -  sin2x] \\  \\  \huge{\longrightarrow \boxed{\boxed{  \sf \: y' =( {e}^{{x}^{2}{sin}^{2}+ {cos}^{2}x} )[ sin2x(x^2 - 1) + 2x sin^2 x]}}}

Note

  • Derivative of e^x is e^x

  • Derivative of cos x is - sin x

  • Derivative of sin x is cos x

  • Product Rule : u'v + v'u

  • Derivative of sin²x is sin2x

  • Derivative of cos²x is - sin2x
Answered by Anonymous
30

\Large{\underline{\underline{\mathfrak{\pink{\bf{Question}}}}}}

\bigstar\sf{\:Differentiate\:following \:function \: w.r.t.\:x}

\mapsto\orange{\sf{\:{e}^{({x}^{2}{sin}^{2} x+ {cos}^{2} x)}}}

\Large{\underline{\underline{\mathfrak{\orange{\bf{Solution}}}}}}

We Know,

\mapsto\boxed{\boxed{\pink{\sf{\:\dfrac{de^y}{dx}\:=\:e^y\dfrac{dy}{dx}}}}}

\mapsto\boxed{\boxed{\pink{\sf{\:\dfrac{d\sin x}{dx}\:=\:\cos x}}}}

\mapsto\boxed{\boxed{\pink{\sf{\:\dfrac{d\cos x}{dx}\:=\:-\sin x}}}}

\mapsto\boxed{\boxed{\pink{\sf{\:\dfrac{dx^n}{dx}\:=\:nx^{n-1}}}}}

\mapsto\pink{\sf{\:2\sin x \cos x \:=\:\sin 2x}}

_____________________

\Large{\underline{\underline{\mathfrak{\pink{\bf{Explanation}}}}}}

\mapsto\orange{\sf{\:\dfrac{d{e}^{(x^2\sin^2 x + \cos^2 x)}}{dx}}}

\mapsto\sf{\:\left({e}^{x^2\sin^2 x+\cos^2 x}\right)\:\left[\dfrac{d(x^2\sin^2 x + \cos^2 x)}{dx}\right]}

\mapsto\sf{\:\left({e}^{x^2\sin^2 x+\cos^2 x}\right)\left[\dfrac{d(x^2\sin^2 x)}{dx}\:+\:\dfrac{d(\cos^2 x)}{dx}\right]}

\:\:\:\:\green{\sf{\:\left[\dfrac{duv}{dx}\:=\:u\dfrac{dv}{dx}+v\dfrac{du}{dx}\right]}}

\mapsto\sf{\:\left({e}^{x^2\sin^2 x+\cos^2 x}\right)\:\left[x^2\dfrac{d(\sin^2 x)}{dx}+\sin^2 x\:\dfrac{dx^2}{dx}\:+\:2\cos x\times\dfrac{d(\cos x)}{dx}\right]}

\mapsto\sf{\:\left({e}^{x^2\sin^2 x+\cos^2 x}\right)\left[x^2\times2\sin x\times\dfrac{d(\sin x)}{dx}+2x\sin^2 x\:+\:2\cos x\times(-\sin x)\right]}

\mapsto\sf{\:\left({e}^{x^2\sin^2 x+\cos^2 x}\right)\left[x^2\times2\sin x\:\cos x\:+\:2x\:\sin^2 x\:+\:2\cos x\:(-\sin x)\right]}

\:\:\:\:\:\green{\sf{\:\left(2\sin x \cos x \:=\:\sin 2x\right)}}

\mapsto\sf{\:\left({e}^{x^2\sin^2 x+\cos^2 x}\right)\left[x^2\:\sin 2x\:+\:2x\:\sin^2 x\:\:-\:\sin 2x\right]}

\mapsto\sf{\:\left({e}^{x^2\sin^2 x+\cos^2 x}\right)\left[\sin 2x\:(x^2-1)\:+\:2x\:\sin^2 x\right]}

That's Answer

Similar questions